Abstract

We report a quasi-continuous-wave external cavity Raman laser based on potassium yttrium tungstate (KYW). Laser output efficiency and spectrum are severely affected by the presence of high gain Raman modes of low frequency (< 250 cm−1) that are characteristic of this crystal class. Output spectra contained frequency combs spaced by the low frequency modes but with the overall pump-to-Stokes conversion efficiency at least an order of magnitude lower than that typically obtained in other crystal Raman lasers. We elucidate the primary factors affecting laser performance by measuring the Raman gain coefficients of the low energy modes and numerically modeling the cascading dynamics. For a pump polarization aligned to the Ng crystallo-optic axis, the 87 cm−1 Raman mode has a gain coefficient of 9.2 cm/GW at 1064 nm and a dephasing time T2 = 9.6 ps, which are both notably higher than for the 765 cm−1 mode usually considered to be the prominent Raman mode of KYW. The implications for continuous-wave Raman laser design and the possible advantages for applications are discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power tungstate-crystal Raman laser operating in the strong thermal lensing regime

Aaron McKay, Ondrej Kitzler, and Richard P. Mildren
Opt. Express 22(1) 707-715 (2014)

Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1

M. T. Chang, W. Z. Zhuang, K. W. Su, Y. T. Yu, and Y. F. Chen
Opt. Express 21(21) 24590-24598 (2013)

Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation

Riccardo Casula, Jussi-Pekka Penttinen, Mircea Guina, Alan J. Kemp, and Jennifer E. Hastie
Optica 5(11) 1406-1413 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  2. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
    [Crossref]
  3. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
    [Crossref] [PubMed]
  4. O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
    [Crossref] [PubMed]
  5. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
    [Crossref] [PubMed]
  6. R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
    [Crossref]
  7. R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (John Wiley & Sons, 2013), Chap. 8.
  8. Y. Romanyuk, “Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers,” Thesis, Swiss Federal Institute of Technology in Lausanne (2005).
  9. A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]
  10. A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
    [Crossref]
  11. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd),” Opt. Eng. 36(6), 1660–1669 (1997).
    [Crossref]
  12. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [Crossref] [PubMed]
  13. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30(18), 2454–2456 (2005).
    [Crossref] [PubMed]
  14. L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
    [Crossref]
  15. D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
    [Crossref]
  16. J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln= Sm—Lu, Y),” Spectrochim. Acta Am. 43(3), 361–373 (1987).
  17. D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
    [Crossref] [PubMed]
  18. A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
    [Crossref]
  19. R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16(5), 3261–3272 (2008).
    [Crossref] [PubMed]
  20. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-cw pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
    [Crossref] [PubMed]
  21. A. McKay, O. Kitzler, and R. P. Mildren, “Thermal lens evolution and compensation in a high power KGW Raman laser,” Opt. Express 22(6), 6707–6718 (2014).
    [Crossref] [PubMed]
  22. B. Denker and E. Shklovsky, Handbook of solid-state lasers: Materials, systems and applications (Elsevier, 2013).
  23. D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
    [Crossref]
  24. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20(9), 9841–9850 (2012).
    [Crossref] [PubMed]
  25. S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
    [Crossref]
  26. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
    [Crossref]
  27. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30(13), 1701–1703 (2005).
    [Crossref] [PubMed]
  28. V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
    [Crossref]
  29. L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
    [Crossref]
  30. A. McKay, O. Kitzler, and R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22(1), 707–715 (2014).
    [Crossref] [PubMed]
  31. C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
    [Crossref]
  32. R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
    [Crossref]
  33. A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye‐safe region in a high‐power diamond Raman laser,” Laser Photonics Rev. 8(3), L37–L41 (2014).
    [Crossref]
  34. A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Non-collinear beam combining of kilowatt beams in a diamond Raman amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATu5A.1.

2015 (5)

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

2014 (4)

2013 (1)

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

2012 (3)

2011 (1)

2009 (1)

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

2008 (2)

R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16(5), 3261–3272 (2008).
[Crossref] [PubMed]

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

2007 (2)

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

2006 (1)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

2005 (2)

2004 (2)

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

2002 (1)

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

2001 (1)

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

2000 (1)

L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
[Crossref]

1997 (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd),” Opt. Eng. 36(6), 1660–1669 (1997).
[Crossref]

1987 (1)

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln= Sm—Lu, Y),” Spectrochim. Acta Am. 43(3), 361–373 (1987).

Badikov, V.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Basiev, T.

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Batay, L.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Becker, P.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Bohatý, L.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Burakevich, V.

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

Burakevich, V. N.

Burns, D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
[Crossref] [PubMed]

Butashin, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Chang, J.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Chen, Y. F.

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

Chulkov, R.

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

Chunaev, D.

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Convery, M.

Dawson, M. D.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
[Crossref] [PubMed]

Demidovich, A.

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Demidovich, A. A.

Ding, S.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Eichler, H.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

El-Desouki, M.

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Grabtchikov, A.

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Grabtchikov, A. S.

Hanuza, J.

L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
[Crossref]

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln= Sm—Lu, Y),” Spectrochim. Acta Am. 43(3), 361–373 (1987).

Hastie, J. E.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
[Crossref] [PubMed]

Jakutis-Neto, J.

Kaminskii, A.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
[Crossref]

Karasik, A. Y.

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Kasprowicz, D.

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

Kemp, A. J.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
[Crossref] [PubMed]

Kiefer, W.

Kitzler, O.

Klevtsova, R.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Konstantinova, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Konushkin, V.

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Kück, S.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Kuzmin, A.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Lin, J.

Lisinetskii, V.

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Lisinetskii, V. A.

Liu, Y.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Lubeigt, W.

Lux, O.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Macalik, L.

L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
[Crossref]

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln= Sm—Lu, Y),” Spectrochim. Acta Am. 43(3), 361–373 (1987).

Majchrowski, A.

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

Maksimenka, R.

Markevich, V.

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

McKay, A.

McKay, T.

Michalski, E.

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

Mildren, R.

Mildren, R. P.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref] [PubMed]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-cw pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref] [PubMed]

A. McKay, O. Kitzler, and R. P. Mildren, “Thermal lens evolution and compensation in a high power KGW Raman laser,” Opt. Express 22(6), 6707–6718 (2014).
[Crossref] [PubMed]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye‐safe region in a high‐power diamond Raman laser,” Laser Photonics Rev. 8(3), L37–L41 (2014).
[Crossref]

A. McKay, O. Kitzler, and R. P. Mildren, “High power tungstate-crystal Raman laser operating in the strong thermal lensing regime,” Opt. Express 22(1), 707–715 (2014).
[Crossref] [PubMed]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[Crossref] [PubMed]

R. P. Mildren and J. A. Piper, “Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes,” Opt. Express 16(5), 3261–3272 (2008).
[Crossref] [PubMed]

Mochalov, I. V.

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd),” Opt. Eng. 36(6), 1660–1669 (1997).
[Crossref]

Mond, M.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Nold, J.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Orekhova, V.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Orlovich, V.

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Orlovich, V. A.

Panyutin, V.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Papashvili, A.

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Parrotta, D. C.

Pask, H.

Pask, H. M.

H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30(18), 2454–2456 (2005).
[Crossref] [PubMed]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Pavlyuk, A.

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Piper, J.

Piper, J. A.

Rhee, H.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Rückamp, R.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Runka, T.

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

Sabella, A.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

Savitski, V. G.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

Schmitt, M.

Schreiber, T.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Sheina, S.

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Shirakawa, A.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Spence, D. J.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref] [PubMed]

Strecker, M.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Su, K. W.

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

Tang, C. Y.

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

Titov, A.

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Ueda, K.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Wang, Q.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Wang, S.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Wetter, N. U.

Williams, R. J.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-cw pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref] [PubMed]

Yoneda, H.

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Zhuang, W. Z.

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

Appl. Phys. B (2)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

V. Lisinetskii, A. Grabtchikov, A. Demidovich, V. Burakevich, V. Orlovich, and A. Titov, “Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[Crossref]

Appl. Phys. Lett. (1)

L. Batay, A. Kuzmin, A. Grabtchikov, V. Lisinetskii, V. Orlovich, A. Demidovich, A. Titov, V. Badikov, S. Sheina, V. Panyutin, M. Mond, and S. Kück, “Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2,” Appl. Phys. Lett. 81(16), 2926–2928 (2002).
[Crossref]

Crystallogr. Rep. (1)

A. Kaminskii, A. Konstantinova, V. Orekhova, A. Butashin, R. Klevtsova, and A. Pavlyuk, “Optical and nonlinear laser properties of the χ (3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

IEEE J. Quantum Electron. (3)

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[Crossref]

S. Ding, X. Zhang, Q. Wang, J. Chang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43(8), 722–729 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Y. Tang, W. Z. Zhuang, K. W. Su, and Y. F. Chen, “Efficient continuous-wave self-Raman Nd: KGW laser with intracavity cascade emission based on shift of 89 cm−1,” IEEE J. Sel. Top. Quantum Electron. 21(1), 142–147 (2015).
[Crossref]

J. Mol. Struct. (1)

L. Macalik, J. Hanuza, and A. Kaminskii, “Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals,” J. Mol. Struct. 555(1–3), 289–297 (2000).
[Crossref]

J. Phys. Chem. Solids (1)

D. Kasprowicz, T. Runka, A. Majchrowski, and E. Michalski, “Low-temperature vibrational properties of KGd(WO4)2:(Er, Yb) single crystals studied by Raman spectroscopy,” J. Phys. Chem. Solids 70(9), 1242–1247 (2009).
[Crossref]

Laser Photonics Rev. (2)

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high‐power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

A. McKay, O. Kitzler, and R. P. Mildren, “Simultaneous brightness enhancement and wavelength conversion to the eye‐safe region in a high‐power diamond Raman laser,” Laser Photonics Rev. 8(3), L37–L41 (2014).
[Crossref]

Laser Phys. Lett. (2)

A. Kaminskii, O. Lux, H. Rhee, H. Eichler, H. Yoneda, A. Shirakawa, K. Ueda, R. Rückamp, L. Bohatý, and P. Becker, “Manifestations of nonlinear optical effects in a novel SRS-active crystal—natural topaz, Al2(F1−x(OH)x)2SiO4: many-phonon χ (3)-lasing, more than sesqui-octave Stokes and anti-Stokes multi-wavelength comb lasing, cascaded and cross-cascaded χ(3)↔ χ(3) Raman-induced interactions under single-and dual-wavelength picosecond collinear coherent pumping, THG and combined SRS-promoting phonon modes,” Laser Phys. Lett. 10(7), 073001 (2013).
[Crossref]

D. Chunaev, T. Basiev, V. Konushkin, A. Papashvili, and A. Y. Karasik, “Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF: F−2 amplifiers,” Laser Phys. Lett. 5(8), 589–592 (2008).
[Crossref]

Opt. Eng. (1)

I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd),” Opt. Eng. 36(6), 1660–1669 (1997).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Opt. Mater. (1)

R. Chulkov, V. Markevich, V. Orlovich, and M. El-Desouki, “Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm,” Opt. Mater. 50, 92–98 (2015).
[Crossref]

Prog. Quantum Electron. (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Spectrochim. Acta Am. (1)

J. Hanuza and L. Macalik, “Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln= Sm—Lu, Y),” Spectrochim. Acta Am. 43(3), 361–373 (1987).

Other (4)

R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (John Wiley & Sons, 2013), Chap. 8.

Y. Romanyuk, “Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers,” Thesis, Swiss Federal Institute of Technology in Lausanne (2005).

B. Denker and E. Shklovsky, Handbook of solid-state lasers: Materials, systems and applications (Elsevier, 2013).

A. McKay, D. J. Spence, D. W. Coutts, and R. P. Mildren, “Non-collinear beam combining of kilowatt beams in a diamond Raman amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATu5A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. IC = input coupler; OC = output coupler.
Fig. 2
Fig. 2 Reflectance of the input coupler (IC) and the two output couplers (OC1 and OC2) used in the KYW Raman laser. The measurement uncertainty is 0.2% and 0.5% for measurements of OC1 and OC2, respectively. The vertical dashed lines indicate the reflectance at pump and different Stokes wavelengths observed experimentally (as shown in Fig. 3(b)).
Fig. 3
Fig. 3 (a). Output Stokes peak power versus pump peak power when using OC1. The pump polarization direction was parallel to the Ng axis. The inset shows the Stokes beam profile at 92 W pump power. (b). Laser output spectrum at 50 W pump power, containing the pump line at 1064 nm and various Stokes components. The brackets indicate the Raman modes responsible for the various output wavelengths (765 cm−1, 905 cm−1 and 87 cm−1, respectively).
Fig. 4
Fig. 4 Output Stokes peak power versus pump peak power when using OC2. The laser output spectrum in the inset was measured at 110 W pump power and the pump intensity is attenuated using a long pass filter. (Note that the shoulders on the short-wavelength side of the more intense lines in the inset is an artifact of the spectrometer.) The brackets indicate the Raman modes responsible for the Stokes wavelengths (765 cm−1 and 87 cm−1, respectively).
Fig. 5
Fig. 5 Output spectrum at 90 W pump peak power for the pump polarization aligned to the Nm axis and when using OC1. The spectrum shows the pump wavelength at 1064 nm and three Stokes-shifted wavelengths generated from the 905 cm−1 and cross-cascaded 225 cm−1 phonon modes. The brackets indicate the Raman modes responsible for the first and cascaded Stokes wavelengths (905 cm−1 and 225 cm−1, respectively).
Fig. 6
Fig. 6 Spontaneous Raman spectra of KYW for the pump polarization (E) parallel to (a) the Ng and (b) the Nm crystallo-optic axis. The insets to (a) and (b) show fitted line shapes (after baseline correction) of the 87 cm−1 and the 225 cm−1 modes, respectively.
Fig. 7
Fig. 7 Measured spectra (solid lines) and corresponding modelled spectra (dashed lines) for (a) OC1 at different pump powers and (b) OC2 at 110 W.

Tables (3)

Tables Icon

Table 1 Comparison of KYW Properties with Other Raman Crystals Used in CW-ECRLs

Tables Icon

Table 2 Linewidths and Relative Peak Intensities of the Raman Modes for Ng and Nm axes

Tables Icon

Table 3 Raman Gain Coefficients Obtained by the Numerical Model (for Pump Polarization Parallel to Ng, Pump Wavelength: 1064 nm) by Comparison with Experiment

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d I p dt = I pump t rt 2 l R g a t rt I p I a 2 l R g b t rt I p I b L s log( R 1p R 2p ) t rt I p ,
d I a dt = 2 l R g a η a t rt I p I a 2 l R g c η c t rt I a I ai L s log( R 1a R 2a ) t rt I a + 2K l R t rt I a ,
d I b dt = 2 l R g b η b t rt I p I b 2 l R g c η c t rt I b I bi L s log( R 1b R 2b ) t rt I b + 2K l R t rt I b .

Metrics