Abstract

In non-contacting depth extraction there are several issues, such as the accuracy and the measurement speed. In the issue of the measurement speed, the computation cost for image processing is significant. We present an all-optical depth extraction method by coloring objects according to their depth. Our system is operated fully optically and both encoding and decoding processes are optically performed. Therefore, all-optical depth coloring has a distinct advantage to extract the depth information in real time without any computation cost. We invent a directional gating method to extract the points from the object which are positioned at the same distance. Based on this method, the objects look painted by different colors according to the distance when the objects are observed through our system. In this paper, we demonstrate the all-optical depth coloring system and verify the feasibility of our method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inverse conversion algorithm for an all-optical depth coloring camera

Sungjin Lim, Daerak Heo, Mugeon Kim, Geunseop Choi, and Joonku Hahn
Appl. Opt. 56(34) 9469-9476 (2017)

Three-dimensional optical metrology with color-coded extended depth of focus

E. Hasman, S. Keren, N. Davidson, and A. A. Friesem
Opt. Lett. 24(7) 439-441 (1999)

Color-coded optical profilometry with >106 resolved depth steps

Erez Hasman and Vladimir Kleiner
Appl. Opt. 40(10) 1609-1616 (2001)

References

  • View by:
  • |
  • |
  • |

  1. W. Osten and N. Reingand, Optical Imaging and Metrology Advanced Technologies (Wiley-VCH Verlag & Co., 2012).
  2. O. Wulf and B. Wagner, “Fast 3D scanning methods for laser measurement systems,” in International Conference on Control Systems and Computer Science (2003).
  3. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
    [Crossref] [PubMed]
  4. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
    [Crossref]
  5. F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Appl. Geomat. 6(1), 1–15 (2014).
    [Crossref]
  6. B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 303–312.
    [Crossref]
  7. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43(25), 4882–4895 (2004).
    [Crossref] [PubMed]
  8. D. Shin and B. Javidi, “Three-dimensional imaging and visualization of partially occluded objects using axially distributed stereo image sensing,” Opt. Lett. 37(9), 1394–1396 (2012).
    [Crossref] [PubMed]
  9. B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
    [Crossref]
  10. G. W. Scherer, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
    [Crossref]
  11. H. Choi, E. Y. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [Crossref] [PubMed]
  12. A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
    [Crossref]
  13. E.-H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
    [Crossref] [PubMed]
  14. K.-I. Joo, C.-S. Park, M.-K. Park, K.-W. Park, J. S. Park, Y. Seo, J. Hahn, and H. R. Kim, “Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator,” Appl. Opt. 51(14), 2624–2632 (2012).
    [Crossref] [PubMed]
  15. C. I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Springer Science & Business Media, 2003).
  16. V. C. Coffey, “Hyperspectral imaging for safety and security,” Opt. Photonics News 26(10), 26–33 (2015).
    [Crossref]
  17. Y. Oiknine, I. August, and A. Stern, “Along-track scanning using a liquid crystal compressive hyperspectral imager,” Opt. Express 24(8), 8446–8457 (2016).
    [Crossref] [PubMed]
  18. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [Crossref] [PubMed]
  19. X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
    [Crossref] [PubMed]
  20. C. Palmer and E. Loewen, Diffraction Grating Handbook, 6th ed. (Newport Co., 2005).

2016 (1)

2015 (1)

V. C. Coffey, “Hyperspectral imaging for safety and security,” Opt. Photonics News 26(10), 26–33 (2015).
[Crossref]

2014 (2)

X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39(7), 2044–2047 (2014).
[Crossref] [PubMed]

F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Appl. Geomat. 6(1), 1–15 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

G. W. Scherer, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

2010 (1)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[Crossref]

2005 (1)

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

2004 (1)

August, I.

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Brady, D. J.

Choi, H.

Coffey, V. C.

V. C. Coffey, “Hyperspectral imaging for safety and security,” Opt. Photonics News 26(10), 26–33 (2015).
[Crossref]

Curless, B.

B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 303–312.
[Crossref]

Dai, Q.

Fantini, S.

Fox, D.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Hahn, J.

Hallacoglu, B.

He, X.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Henry, P.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Herbst, E.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Javidi, B.

Joo, K.-I.

Jung, S.

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Kim, E.-H.

Kim, H.

Kim, H. R.

Kim, Y.

Krainin, M.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Lee, B.

Levoy, M.

B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 303–312.
[Crossref]

Lin, X.

Liu, Y.

Nex, F.

F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Appl. Geomat. 6(1), 1–15 (2014).
[Crossref]

Niu, P.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Oiknine, Y.

Park, C.-S.

Park, J. S.

Park, J.-H.

Park, K.-W.

Park, M.-K.

Pitsianis, N. P.

Remondino, F.

F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Appl. Geomat. 6(1), 1–15 (2014).
[Crossref]

Ren, X.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Scherer, G. W.

G. W. Scherer, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Seo, Y.

Sheppard, C. J. R.

Shin, D.

So, P. T. C.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Stern, A.

Sun, X.

Wagadarikar, A. A.

Wagner, B.

O. Wulf and B. Wagner, “Fast 3D scanning methods for laser measurement systems,” in International Conference on Control Systems and Computer Science (2003).

Wetzstein, G.

Wieneke, B.

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[Crossref]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Wong, A. K. C.

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Wulf, O.

O. Wulf and B. Wagner, “Fast 3D scanning methods for laser measurement systems,” in International Conference on Control Systems and Computer Science (2003).

Yew, E. Y.

Adv. Opt. Photonics (1)

G. W. Scherer, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128–160 (2011).
[Crossref]

Appl. Geomat. (1)

F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Appl. Geomat. 6(1), 1–15 (2014).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Comput. Vis. Image Underst. (1)

A. K. C. Wong, P. Niu, and X. He, “Fast acquisition of dense depth date by a new structured light scheme,” Comput. Vis. Image Underst. 98(3), 398–422 (2005).
[Crossref]

Exp. Fluids (1)

B. Wieneke, “Volume self-calibration for 3D particle image velocimetry,” Exp. Fluids 45(4), 549–556 (2008).
[Crossref]

Int. J. Robot. Res. (1)

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).
[Crossref]

Nat. Methods (1)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photonics News (1)

V. C. Coffey, “Hyperspectral imaging for safety and security,” Opt. Photonics News 26(10), 26–33 (2015).
[Crossref]

Other (5)

C. Palmer and E. Loewen, Diffraction Grating Handbook, 6th ed. (Newport Co., 2005).

W. Osten and N. Reingand, Optical Imaging and Metrology Advanced Technologies (Wiley-VCH Verlag & Co., 2012).

O. Wulf and B. Wagner, “Fast 3D scanning methods for laser measurement systems,” in International Conference on Control Systems and Computer Science (2003).

C. I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Springer Science & Business Media, 2003).

B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in SIGGRAPH '96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 303–312.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Conventional setup for the depth extraction based on structured illumination.
Fig. 2
Fig. 2 (a) Structure of directional gating and (b) the circle of the positions selected by directional gating.
Fig. 3
Fig. 3 (a) Structure of depth coloring and (b) the set of depth circles with different radii according to the selected wavelength.
Fig. 4
Fig. 4 All-optical depth coloring system with (a) a front view and (b) a back view.
Fig. 5
Fig. 5 (a) Schematic of the calibration experiment and (b) experimental setup. Relations between the distance of the mirror and the central wavelength of measured spectrum according to two bias angles when the gratings with (c) 300 l/mm and (d) 600 l/mm are applied.
Fig. 6
Fig. 6 (a), (c) Two objects for depth coloring experiment. (b), (d) Colored images through our system captured by a conventional camera.
Fig. 7
Fig. 7 Spectral and spatial deviations due to the width of the slits.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

l = g sin θ L / sin ( θ L + θ C ) .
θ L + θ C = θ k .
( y0.5g ) 2 + ( z0.5 4 r 2 g 2 ) 2 = r 2 .
r=g/ 2sin θ k .
l=2rsin θ L ,
z=( gy )tan θ L .
z= l 2r [ l 1 ( g/ 2r ) 2 +g 1 ( l/ 2r ) 2 ].
θ m ( λ )= sin 1 ( mλ /d +sin θ i ),
θ m ( λ ) θ C =π/2 θ k .
ϕ k =π/2 θ i + θ C .
r= g 2sin[ sin 1 ( λ/d sin θ i )+ θ i + ϕ k ] .
z g sin( λ/d )sin ϕ k sin 2 θ L .
Δz= 2( gD )S z 0 ( gD ) 2 S 2 2S z 0 gD .
cot θ L +cot θ C =g/z ,

Metrics