Abstract

A joint timing and frequency synchronization algorithm is proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) systems. The timing and frequency synchronization is realized by using only one training symbol which is composed of conjugated symmetric sequence. The timing estimation of the proposed algorithm has the advantage of being robust to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD), and the frequency estimation range of fractional subcarrier spacing can be achieved. The feasibility and effectiveness of the proposed joint synchronization algorithm is verified in both simulations and a 47.3 Gbit/s 16-ary quadrature amplitude modulation (16-QAM) CO-OFDM system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Joint timing and frequency synchronization based on weighted CAZAC sequences for reduced-guard-interval CO-OFDM systems

Oluyemi Omomukuyo, Deyuan Chang, Jingwen Zhu, Octavia Dobre, Ramachandran Venkatesan, Telex Ngatched, and Chuck Rumbolt
Opt. Express 23(5) 5777-5788 (2015)

Modified Synchronization Scheme for Coherent Optical OFDM Systems

Yusha Huang, Xiaoguang Zhang, and Lixia Xi
J. Opt. Commun. Netw. 5(6) 584-592 (2013)

Joint timing/frequency offset estimation and correction based on FrFT encoded training symbols for PDM CO-OFDM systems

Huibin Zhou, Xiang Li, Ming Tang, Qiong Wu, Xi Chen, Ming Luo, Songnian Fu, and Deming Liu
Opt. Express 24(25) 28256-28269 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [Crossref]
  2. S. Hara and R. Prasad, “Multicarrier techniques for 4G mobile communications” (Artech House Boston, 2003).
  3. W. Shieh and I. Djordjevic, Signal Processing for Optical OFDM (Academic, 2009).
  4. P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun. 42(10), 2908–2914 (1994).
    [Crossref]
  5. J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
    [Crossref]
  6. X. Zhou, K. Long, R. Li, X. Yang, and Z. Zhang, “A simple and efficient frequency offset estimation algorithm for high-speed coherent optical OFDM systems,” Opt. Express 20(7), 7350–7361 (2012).
    [Crossref] [PubMed]
  7. S. H. Fan, J. Yu, D. Qian, and F. K. Chang, “A fast and efficient frequency offset correction technique for coherent optical orthogonal frequency division multiplexing,” J. Lightwave Technol. 29(13), 1997–2004 (2011).
    [Crossref]
  8. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
    [Crossref]
  9. H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
    [Crossref]
  10. B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
    [Crossref]
  11. X. Du, J. Zhang, Z. Xu, and C. Yu, “A novel timing offset estimation method for coherent optical OFDM Systems, ” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AS4F.5.
    [Crossref]
  12. H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
    [Crossref]
  13. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
    [Crossref]

2012 (1)

2011 (2)

S. H. Fan, J. Yu, D. Qian, and F. K. Chang, “A fast and efficient frequency offset correction technique for coherent optical orthogonal frequency division multiplexing,” J. Lightwave Technol. 29(13), 1997–2004 (2011).
[Crossref]

H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
[Crossref]

2009 (1)

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

2006 (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

2003 (1)

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

2000 (1)

H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
[Crossref]

1997 (2)

J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
[Crossref]

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

1994 (1)

P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun. 42(10), 2908–2914 (1994).
[Crossref]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Bhargava, V. K.

H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
[Crossref]

Borjesson, P. O.

J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
[Crossref]

Chang, F. K.

Cheon, H.

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Fan, S. H.

Hong, D.

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

Jansen, S. L.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

Jeon, H. G.

H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
[Crossref]

Kang, C.

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

Kim, K. S.

H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
[Crossref]

Li, R.

Long, K.

Minn, H.

H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
[Crossref]

Moose, P. H.

P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun. 42(10), 2908–2914 (1994).
[Crossref]

Morita, I.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

Park, B.

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

Qian, D.

Randel, S.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

Sandell, M.

J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
[Crossref]

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Serpedin, E.

H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
[Crossref]

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

Spinnler, B.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

Tanaka, H.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

van de Beek, J.

J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
[Crossref]

Yang, X.

Yu, J.

Zeng, M.

H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
[Crossref]

Zhang, Z.

Zhou, X.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[Crossref]

IEEE Commun. Lett. (2)

H. Minn, M. Zeng, and V. K. Bhargava, “On timing offset estimation for OFDM systems,” IEEE Commun. Lett. 4(7), 242–244 (2000).
[Crossref]

B. Park, H. Cheon, C. Kang, and D. Hong, “A novel timing estimation method for OFDM systems,” IEEE Commun. Lett. 7(5), 239–241 (2003).
[Crossref]

IEEE Trans. Commun. (3)

H. G. Jeon, K. S. Kim, and E. Serpedin, “An efficient blind deterministic frequency offset estimator for OFDM systems,” IEEE Trans. Commun. 59(4), 1133–1141 (2011).
[Crossref]

P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun. 42(10), 2908–2914 (1994).
[Crossref]

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

IEEE Trans. Signal Process. (1)

J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process. 45(7), 1800–1805 (1997).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Fiber Technol. (1)

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5–6), 407–413 (2009).
[Crossref]

Other (3)

X. Du, J. Zhang, Z. Xu, and C. Yu, “A novel timing offset estimation method for coherent optical OFDM Systems, ” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper AS4F.5.
[Crossref]

S. Hara and R. Prasad, “Multicarrier techniques for 4G mobile communications” (Artech House Boston, 2003).

W. Shieh and I. Djordjevic, Signal Processing for Optical OFDM (Academic, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Timing metrics of Schimdl’s, Minn’s Park’s and Proposed methods.
Fig. 2
Fig. 2 Experimental setup of the 47.3 Gbit/s 16QAM-OFDM system.
Fig. 3
Fig. 3 The absolute value of timing estimation mean versus SNR for Schmidl’s, Minn’s, Park’s and the proposed methods.
Fig. 4
Fig. 4 Timing estimation error of Schmidl’s, Minn’s, Park’s and the proposed methods for (a) 400km (b) 800 km transmission without CD compensation.
Fig. 5
Fig. 5 BER comparison of Schmidl’s, Minn’s, Park’s and the proposed methods versus different received optical power.
Fig. 6
Fig. 6 Frequency estimation error vs. OSNR under the normalized CFO of −0.1, −0.3 and −0.5.
Fig. 7
Fig. 7 BER vs. OSNR under the condition of with/without FO compensation.
Fig. 8
Fig. 8 (a) Frequency estimation error (b) BER vs. normalized CFO under different OSNR.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P Pro =[ A N/4 B N/4 * B N/4 * A N/4 ].
M(d)= M 1 (d) M 2 (d)
M 1 (d)= | k=0 N/4 1 r(dk1N/4 )r(d+kN/4 ) | / k=0 N/4 1 | r(d+kN/4 ) | 2
M 2 (d)= | k=0 N/4 1 r(dk1+N/4 )r(d+k+N/4 ) | / k=0 N/4 1 | r(d+k+N/4 ) | 2
x N*i+n =(1/N ) k=0 N1 X k,i e j2πkn/N
r N*i+n = e j2π(N*i+n)ε/N l=0 L1 h l x N*i+nl + w N*i+n
ϕ k,m =r(k+mN/2 )r(N/2 k1+mN/2 )
ε ^ f = 2 N m=0 1 k=0 N/4 1 angle( ϕ k,m ) β k,m 2π /N .
ε ^ f = 2 N angle(ϕ) m=0 1 k=0 N/4 1 β k,m 2π /N .
α= m=0 1 k=0 N/4 1 β k,m 2π /N .
ε ^ f = 2 N 2 N m=0 1 k=0 N/4 1 angle( ϕ k,m ) α .

Metrics