Abstract

We demonstrate a surface-emitting quantum cascade laser (QCL) based on second-order buried distributed feedback/distributed Bragg reflector (DFB/DBR) gratings for feedback and outcoupling. The grating fabricated beneath the waveguide was found to fundamentally favor lasing in symmetric mode either through analysis or experiment. Single-lobe far-field radiation pattern with full width at half maximum (FWHM) of 0.18° was obtained along the cavity-length direction. Besides, the buried DFB/DBR grating structure successfully provided an efficient vertical outcoupling mechanism with low optical losses, which manages to achieve a high surface outcouping efficiency of 46% in continuous-wave (CW) operation and 60% in pulsed operation at room temperature. Single-mode emission with a side-mode suppression ratio (SMSR) about 25 dB was continuously tunable by heat sink temperature or injection current. Our work contributes to the realization of high efficiency surface-emitting devices with high far-field beam quality that are significantly needed in many application fields.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers

Guozhen Liang, Houkun Liang, Ying Zhang, Lianhe Li, A. Giles Davies, Edmund Linfield, Siu Fung Yu, Hui Chun Liu, and Qi Jie Wang
Opt. Express 21(26) 31872-31882 (2013)

Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector

Feng-Min Cheng, Zhi-Wei Jia, Jin-Chuan Zhang, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Photon. Res. 5(4) 320-323 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
    [Crossref]
  2. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
    [Crossref] [PubMed]
  3. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
    [Crossref]
  4. C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
    [Crossref]
  5. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
    [Crossref]
  6. S. Schartner, M. Austerer, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Surface emission from episide-down short distributed-feedback quantum cascade lasers,” Opt. Express 16(16), 11920–11929 (2008).
    [Crossref] [PubMed]
  7. A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
    [Crossref]
  8. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
    [Crossref] [PubMed]
  9. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
    [Crossref] [PubMed]
  10. R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Grating-based far field modifications of ring quantum cascade lasers,” Opt. Express 22(13), 15829–15836 (2014).
    [Crossref] [PubMed]
  11. C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
    [Crossref]
  12. C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
    [Crossref]
  13. P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
    [Crossref]
  14. D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
    [Crossref]
  15. J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
    [Crossref]
  16. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
    [Crossref]
  17. S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
    [Crossref]
  18. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
    [Crossref] [PubMed]
  19. S. Li and D. Botez, “Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 43(8), 655–668 (2007).
    [Crossref]

2016 (1)

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

2015 (2)

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

2014 (2)

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Grating-based far field modifications of ring quantum cascade lasers,” Opt. Express 22(13), 15829–15836 (2014).
[Crossref] [PubMed]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

2013 (2)

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

2012 (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

2009 (1)

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

2008 (1)

2007 (3)

2005 (1)

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

2003 (1)

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

2002 (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

2000 (1)

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

1998 (1)

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[Crossref]

Andrews, A. M.

Austerer, M.

S. Schartner, M. Austerer, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Surface emission from episide-down short distributed-feedback quantum cascade lasers,” Opt. Express 16(16), 11920–11929 (2008).
[Crossref] [PubMed]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Beaudoin, G.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Beck, M.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

Beere, H. E.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Belarouci, A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Bonzon, C.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

Botez, D.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

S. Li and D. Botez, “Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 43(8), 655–668 (2007).
[Crossref]

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

Bousseksou, A.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Boyle, C.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

Cai, S.

Capasso, F.

Chassagneux, Y.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Cho, A. Y.

Cockburn, J. W.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Colombelli, R.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Coudevylle, J. R.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Davies, A. G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Detz, H.

Earles, T.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

Faist, J.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
[Crossref] [PubMed]

Finger, N.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Gianordoli, S.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Gini, E.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

Gmachl, C.

Golka, S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Gornik, E.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Green, R. P.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Hu, Q.

Hvozdara, L.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Jia, Z. W.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

Jouy, P.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

Khanna, S. P.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Kirch, J. D.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

Klang, P.

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[Crossref]

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

Krysa, A. B.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Kumar, S.

Lee, A. W.

Lee, A. W. M.

Letartre, X.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Li, L.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Li, S.

S. Li and D. Botez, “Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 43(8), 655–668 (2007).
[Crossref]

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

Lindberg, D. F.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

Linfield, E. H.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Liu, C. W.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

Liu, F.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Liu, F. Q.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Liu, J.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Liu, J. Q.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Macomber, S.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

Maws, L. J.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

Mawst, L. J.

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

Namjou, K.

Patriarche, G.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Pflügl, C.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Qin, Q.

Reno, J. L.

Ritchie, D. A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Roberts, J. S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Sagnes, I.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Schartner, S.

Schrenk, W.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Grating-based far field modifications of ring quantum cascade lasers,” Opt. Express 22(13), 15829–15836 (2014).
[Crossref] [PubMed]

S. Schartner, M. Austerer, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Surface emission from episide-down short distributed-feedback quantum cascade lasers,” Opt. Express 16(16), 11920–11929 (2008).
[Crossref] [PubMed]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Schwarzer, C.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[Crossref]

Sigler, C.

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

Sirtori, C.

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

Sivco, D. L.

Strasser, G.

R. Szedlak, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Grating-based far field modifications of ring quantum cascade lasers,” Opt. Express 22(13), 15829–15836 (2014).
[Crossref] [PubMed]

S. Schartner, M. Austerer, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Surface emission from episide-down short distributed-feedback quantum cascade lasers,” Opt. Express 16(16), 11920–11929 (2008).
[Crossref] [PubMed]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

Szedlak, R.

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

Wang, G.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Wang, L.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Wang, L. J.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Wang, Z. G.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Whittaker, E. A.

Williams, B. S.

Wilson, L. R.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

Witjaksono, G.

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

Wolf, J.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

Xu, G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Yan, F.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Yao, D.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Yao, D. Y.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Yu, Z.

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

Zederbauer, T.

Zhai, S. Q.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

Zhang, J.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

Zhang, J. C.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Zhou, Y. H.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

Zhuo, N.

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Appl. Phys. Lett. (7)

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86(21), 211102 (2005).
[Crossref]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77(14), 2086 (2000).
[Crossref]

A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature,” Appl. Phys. Lett. 95(9), 091105 (2009).
[Crossref]

C. Sigler, J. D. Kirch, T. Earles, L. J. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104(13), 131108 (2014).
[Crossref]

C. Boyle, C. Sigler, J. D. Kirch, D. F. Lindberg, T. Earles, D. Botez, and L. J. Maws, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108(12), 121107 (2016).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106(7), 071104 (2015).
[Crossref]

D. Yao, J. Zhang, F. Liu, N. Zhuo, F. Yan, L. Wang, J. Liu, and G. Wang, “Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 °C at λ~4.6 µm,” Appl. Phys. Lett. 103(4), 041121 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[Crossref]

S. Li and D. Botez, “Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation,” IEEE J. Quantum Electron. 43(8), 655–668 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Li, G. Witjaksono, S. Macomber, and D. Botez, “Analysis of Surface-emitting second-order distributed feedback lasers with central grating phaseshift,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1153–1165 (2003).
[Crossref]

J. Appl. Phys. (2)

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972).
[Crossref]

J. Semiconduct. (1)

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. G. Wang, “Free-space communication based on quantum cascade laser,” J. Semiconduct. 36(9), 094009 (2015).
[Crossref]

Nat. Commun. (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nat. Commun. 3, 952 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic three-dimensional representation of the surface-emitting DFB/DBR laser structure.
Fig. 2
Fig. 2 Threshold gain coefficient for symmetric (S) and anti-symmetric(A)mode as a function of grating duty cycle of the DFB/DBR structure.
Fig. 3
Fig. 3 L-I-V characteristics of the surface-emitting DFB/DBR laser as a function of injection current. The inset shows the L-J curves of the device and a FP counterpart in pulsed operation.
Fig. 4
Fig. 4 CW emission spectra of the surface emitting DFB/DBR QCL at different heat sink temperatures. The upper inset shows CW lasing spectra at different injection currents from 1.0 A to 1.3 A at 20 °C. The lower inset shows the linearly fit tuning characteristic of the lasing frequency with temperature.
Fig. 5
Fig. 5 Measured longitudinal far-fields of the DFB/DBR lasers at different driving currents in pulsed operation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g t h = 2 α + α i Γ lg
G t h = g t h Γ lg
η s u r f = α s u r f 2 α Γ lg + α i ,

Metrics