Abstract

We present a novel differential refractive index sensor prototype based on a matrix of photonic molecules (PM) of soda-lime glass cylinders (εc = 4.5) and two defect cavities. The measured and simulated spectra in the microwave range (8-12 GHz) show a wide photonic stop band with two localized states: the reference state, bound to a decagonal ring of cylinders and the sensing state, bound to the defect cavities. The defect mode is very sensitive to the permittivity of the material inserted in the cavity while the state in the PM remains unperturbed. We find that the response of the sensor is linear. These results can be extrapolated to the visible range due to scale invariance of Maxwell equations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro displacement sensor based on line-defect resonant cavity in photonic crystal

Zhenfeng Xu, Liangcai Cao, Claire Gu, Qingsheng He, and Guofan Jin
Opt. Express 14(1) 298-305 (2006)

Simultaneous sensing of refractive index and temperature based on a three-cavity-coupling photonic crystal sensor

Zheng Wang, ZhongYuan Fu, FuJun Sun, Chao Wang, Jian Zhou, and HuiPing Tian
Opt. Express 27(19) 26471-26482 (2019)

Refractive index sensor with high sensitivity based on circular photonic crystal

Rui Ge, Jianlan Xie, Bei Yan, Exian Liu, Wei Tan, and Jianjun Liu
J. Opt. Soc. Am. A 35(6) 992-997 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
    [Crossref]
  2. K. Wang, “Light localization in photonic band gaps of quasiperiodic dielectric structures,” Phys. Rev. B 82(4), 045119 (2010).
    [Crossref]
  3. K. Wang, “Structural effects on light wave behavior in quasiperiodic regular and decagonal Penrose-tiling dielectric media: A comparative study,” Phys. Rev. B 76(8), 085107 (2007).
    [Crossref]
  4. K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B – Condens. Matter Mater. Phys. 73, 1–5 (2006).
  5. A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
    [Crossref]
  6. B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
    [Crossref]
  7. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
    [Crossref]
  8. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16(20), 16255–16264 (2008).
    [Crossref] [PubMed]
  9. S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett. 87(18), 181102 (2005).
    [Crossref]
  10. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23(8), 1565 (2006).
    [Crossref]
  11. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  12. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
    [Crossref]
  13. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  14. J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82(15), 2374 (2003).
    [Crossref]
  15. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000).
    [Crossref]
  16. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
    [Crossref] [PubMed]
  17. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  18. X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
    [Crossref]
  19. D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
    [Crossref]
  20. L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
    [Crossref]
  21. L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
    [Crossref]
  22. A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
    [Crossref]
  23. M. Clemens and T. Weil, “Discrete electromagnetism with the finite integration technique,” Prog. Electromagnetics Res. 32, 65–87 (2001).
    [Crossref]
  24. A. Andueza, “Supporting material: Differential Refractive index sensor based on Photonic molecules and defect cavities,” http://dx.doi.org/10.6084/m9.figshare.3199552 [retrieved 17 June 2016] (2016).
  25. A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
    [Crossref] [PubMed]
  26. N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
    [Crossref]
  27. S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
    [Crossref]

2014 (1)

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

2013 (1)

L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
[Crossref]

2012 (1)

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

2010 (3)

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

K. Wang, “Light localization in photonic band gaps of quasiperiodic dielectric structures,” Phys. Rev. B 82(4), 045119 (2010).
[Crossref]

2009 (1)

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

2008 (4)

K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express 16(20), 16255–16264 (2008).
[Crossref] [PubMed]

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
[Crossref]

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

2007 (3)

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

K. Wang, “Structural effects on light wave behavior in quasiperiodic regular and decagonal Penrose-tiling dielectric media: A comparative study,” Phys. Rev. B 76(8), 085107 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2006 (2)

S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B 23(8), 1565 (2006).
[Crossref]

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B – Condens. Matter Mater. Phys. 73, 1–5 (2006).

2005 (1)

S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett. 87(18), 181102 (2005).
[Crossref]

2004 (3)

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[Crossref] [PubMed]

2003 (1)

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82(15), 2374 (2003).
[Crossref]

2001 (1)

M. Clemens and T. Weil, “Discrete electromagnetism with the finite integration technique,” Prog. Electromagnetics Res. 32, 65–87 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Abbasi, A.

L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
[Crossref]

Abstreiter, G.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Andueza, A.

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

Armitage, A.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Artemyev, M. V.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Astratov, V. N.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Atlasov, K. A.

Baba, T.

S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett. 87(18), 181102 (2005).
[Crossref]

Balet, L.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Bayer, M.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Boriskina, S. V.

Caselli, N.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

Chow, E.

Clemens, M.

M. Clemens and T. Weil, “Discrete electromagnetism with the finite integration technique,” Prog. Electromagnetics Res. 32, 65–87 (2001).
[Crossref]

Doll, T.

Dorfner, D. F.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Dremin, A. A.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Dwir, B.

Echeverría, R.

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

Finley, J. J.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Fiore, A.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Forchel, A.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Francardi, M.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Francois, A.

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
[Crossref]

Frandsen, L. H.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Gehring, G. A.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Gerace, D.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

Gerardino, A.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Girolami, G.

Grot, A.

Gurioli, M.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
[Crossref]

Huang, L.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Hürlimann, T.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Intonti, F.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Ippen, E. P.

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

Ishii, S.

S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett. 87(18), 181102 (2005).
[Crossref]

Ji, Y.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Jin, G.

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Kapon, E.

Karlsson, K. F.

Kavokin, A. V.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Kheradmand, R.

L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
[Crossref]

Knipp, P. A.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Kulakovskii, V. D.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Lee, R. K.

Li, L. H.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Liu, Q.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Loncar, M.

Lu, N.

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

Mirkarimi, L. W.

Möller, B. M.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

Morales, P.

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Popovic, M. A.

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

Rakich, P. T.

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Reithmaier, J.

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Riboli, F.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Roberts, J. S.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Rudra, A.

Scherer, A.

Sevilla, J.

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

Shiramin, L. A.

L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
[Crossref]

Sigalas, M.

Skolnick, M. S.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Soljacic, M.

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Tian, H.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Vignolini, S.

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Vinattieri, A.

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

Vuckovic, J.

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82(15), 2374 (2003).
[Crossref]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000).
[Crossref]

Wang, K.

K. Wang, “Light localization in photonic band gaps of quasiperiodic dielectric structures,” Phys. Rev. B 82(4), 045119 (2010).
[Crossref]

K. Wang, “Structural effects on light wave behavior in quasiperiodic regular and decagonal Penrose-tiling dielectric media: A comparative study,” Phys. Rev. B 76(8), 085107 (2007).
[Crossref]

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B – Condens. Matter Mater. Phys. 73, 1–5 (2006).

Wang, X.

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

Wannemacher, R.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

Weil, T.

M. Clemens and T. Weil, “Discrete electromagnetism with the finite integration technique,” Prog. Electromagnetics Res. 32, 65–87 (2001).
[Crossref]

Whittaker, D. M.

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Wiersma, D. S.

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Woggon, U.

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

Xu, Y.

Xu, Z.

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

Yamamoto, Y.

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82(15), 2374 (2003).
[Crossref]

Yang, D.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Yariv, A.

Zabel, T.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

Zani, M.

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

Zhang, P.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Zhou, J.

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Zhu, J.

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

Appl. Phys. Lett. (6)

S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett. 87(18), 181102 (2005).
[Crossref]

S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett. 94(15), 151103 (2009).
[Crossref]

J. Vučković and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett. 82(15), 2374 (2003).
[Crossref]

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[Crossref]

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92(14), 141107 (2008).
[Crossref]

S. Vignolini, F. Riboli, F. Intonti, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Mode hybridization in photonic crystal molecules,” Appl. Phys. Lett. 97(6), 063101 (2010).
[Crossref]

IEEE Sens. J. (1)

L. A. Shiramin, R. Kheradmand, and A. Abbasi, “High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal,” IEEE Sens. J. 13(5), 1483–1486 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Andueza, R. Echeverría, P. Morales, and J. Sevilla, “Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness,” J. Appl. Phys. 107(12), 124902 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007).
[Crossref]

Opt. Commun. (2)

X. Wang, Z. Xu, N. Lu, J. Zhu, and G. Jin, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. 281(6), 1725–1731 (2008).
[Crossref]

L. Huang, H. Tian, D. Yang, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Optimization of Fig. of merit in label-free biochemical sensors by designing a ring defect coupled resonator,” Opt. Commun. 332, 42–49 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (4)

N. Caselli, F. Intonti, F. Riboli, A. Vinattieri, D. Gerace, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Antibonding ground state in photonic crystal molecules,” Phys. Rev. B 86(3), 035133 (2012).
[Crossref]

B. M. Möller, U. Woggon, M. V. Artemyev, and R. Wannemacher, “Photonic molecules doped with semiconductor nanocrystals,” Phys. Rev. B 70(11), 115323 (2004).
[Crossref]

K. Wang, “Light localization in photonic band gaps of quasiperiodic dielectric structures,” Phys. Rev. B 82(4), 045119 (2010).
[Crossref]

K. Wang, “Structural effects on light wave behavior in quasiperiodic regular and decagonal Penrose-tiling dielectric media: A comparative study,” Phys. Rev. B 76(8), 085107 (2007).
[Crossref]

Phys. Rev. B – Condens. Matter Mater. Phys. (2)

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B – Condens. Matter Mater. Phys. 73, 1–5 (2006).

A. Armitage, M. S. Skolnick, A. V. Kavokin, D. M. Whittaker, V. N. Astratov, G. A. Gehring, and J. S. Roberts, “Polariton-induced optical asymmetry in semiconductor microcavities,” Phys. Rev. B – Condens. Matter Mater. Phys. 58(23), 15367–15370 (1998).
[Crossref]

Phys. Rev. Lett. (1)

M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81(12), 2582–2585 (1998).
[Crossref]

Prog. Electromagnetics Res. (1)

M. Clemens and T. Weil, “Discrete electromagnetism with the finite integration technique,” Prog. Electromagnetics Res. 32, 65–87 (2001).
[Crossref]

Other (1)

A. Andueza, “Supporting material: Differential Refractive index sensor based on Photonic molecules and defect cavities,” http://dx.doi.org/10.6084/m9.figshare.3199552 [retrieved 17 June 2016] (2016).

Supplementary Material (1)

NameDescription
» Dataset 1       This data contains extra calculations do not includes in the paper that justify some of the argumentation's and results presented in the paper

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sensor design. Radiation propagates in x direction. Disposition of 191 cylinders structured as a 3x2 array of building blocks, depicted by a green dashed box. Blue filled circles correspond to the spots where samples of different refractive index will be inserted to be measured. These spots are in the defect cavities (red solid line) labeled C1 and C2.
Fig. 2
Fig. 2 (a) Image of the built-up glass sensor completed with axis notation used in the text. (b) Detail of the fabricated sensor indicating the building block, defects cavities and cylinders samples
Fig. 3
Fig. 3 Color map plots of the calculated transmission spectra (dB) as a function of frequency (f) and dielectric permittivity (εs) of the samples at the cavities C1 and C2 with a radius of (a) r2 = 3 mm and (b) r2 = 2.5. Dielectric permittivity and length of the cylinders are εc = 4.5 and l = 25 cm, respectively. Horizontal yellow lines at 10.57 GHz correspond to reference mode of the sensor. Oblique yellow/cyan lines correspond to sensing mode. Vertical white-dashed line corresponds to experimental measurements shown below.
Fig. 4
Fig. 4 (a) Calculated and (b) measured transmission spectra for the experimental configurations 3 (black solid line) and 1 (red dashed line). Resonances corresponding to the sensing (S marked) and reference modes (R marked) are labeled for each case. Vertical dashed lines correspond to the edge of sensor stop band.
Fig. 5
Fig. 5 (a) Calculated and (b) measured transmission spectra for the experimental configurations 3 (black solid line) and 2 (red dashed line). Resonances corresponding to the sensing (S marked) and reference modes (R marked) are labeled for each case. Vertical dashed lines correspond to the edge of sensor stop band.
Fig. 6
Fig. 6 Distribution of the electric-field for yz plane (a) of R3 at f = 10.57 GHz, (b) of S3A at f = 11.04 GHz and (c) S3B at f = 11.12 GHz without a sample (configuration 3). (d) Distribution of the electric-field for yz plane of R1 at f = 10.57 GHz and (e) S1A at f = 9.78 GHz for a sample of r2 = 2.5 mm and εc = 4 (configuration 1). The red and blue colors indicate the electric field intensity and polarity.

Tables (2)

Tables Icon

Table 1 Summary of the main characteristics of the calibration curve in the two measuring conditions studied.

Tables Icon

Table 2 Summary of the performed measurements.

Metrics