Abstract

For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses

Liping Wang, Yanqi Zhao, Shanhui Xu, and Mingying Peng
Opt. Lett. 41(7) 1340-1343 (2016)

Luminescence from bismuth-germanate glasses and its manipulation through oxidants

A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek
Opt. Mater. Express 2(10) 1320-1328 (2012)

Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses

Beibei Xu, Shifeng Zhou, Miaojia Guan, Dezhi Tan, Yu Teng, Jiajia Zhou, Zhijun Ma, Zhanglian Hong, and Jianrong Qiu
Opt. Express 19(23) 23436-23443 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [Crossref] [PubMed]
  2. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [Crossref] [PubMed]
  3. L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011).
    [Crossref] [PubMed]
  4. J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:α-BaB2O4 single crystal,” Opt. Express 18(4), 3385–3391 (2010).
    [Crossref] [PubMed]
  5. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi5(3+) in Bi5(AlCl4)3.,” Opt. Express 20(3), 2562–2571 (2012).
    [Crossref] [PubMed]
  6. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [Crossref] [PubMed]
  7. Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
    [Crossref]
  8. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
    [Crossref] [PubMed]
  9. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Effect of chloride ion introduction on structural and 1.5 um emission properties in Er3+-doped fluorophosphate glass,” J. Opt. Soc. Am. B 28(7), 2701 (2011).
    [Crossref]
  10. D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
    [Crossref]
  11. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [Crossref]
  12. Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(18), 3067–3071 (2013).
    [Crossref]
  13. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [Crossref] [PubMed]
  14. E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
    [Crossref]
  15. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
    [Crossref]
  16. A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
    [Crossref]
  17. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
    [Crossref]
  18. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
    [Crossref]
  19. L. Wang, Y. Zhao, S. Xu, and M. Peng, “Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses,” Opt. Lett. 41(7), 1340–1343 (2016).
    [Crossref] [PubMed]
  20. D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
    [Crossref]
  21. M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
    [Crossref]
  22. M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
    [Crossref]
  23. P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
    [Crossref]
  24. L. Soltay and G. Henderson, “The structure of lithium containing silicate and germanate glasses,” Can. Mineral. 43(5), 1643–1651 (2007).
    [Crossref]
  25. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
    [Crossref] [PubMed]

2016 (2)

2013 (2)

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(18), 3067–3071 (2013).
[Crossref]

2012 (2)

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi5(3+) in Bi5(AlCl4)3.,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

2011 (4)

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

L. Su, H. Zhao, H. Li, L. Zheng, G. Ren, J. Xu, W. Ryba-Romanowski, R. Lisiecki, and P. Solarz, “Near-infrared ultrabroadband luminescence spectra properties of subvalent bismuth in CsI halide crystals,” Opt. Lett. 36(23), 4551–4553 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Effect of chloride ion introduction on structural and 1.5 um emission properties in Er3+-doped fluorophosphate glass,” J. Opt. Soc. Am. B 28(7), 2701 (2011).
[Crossref]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

2010 (2)

J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:α-BaB2O4 single crystal,” Opt. Express 18(4), 3385–3391 (2010).
[Crossref] [PubMed]

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

2009 (3)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[Crossref] [PubMed]

2007 (2)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

L. Soltay and G. Henderson, “The structure of lithium containing silicate and germanate glasses,” Can. Mineral. 43(5), 1643–1651 (2007).
[Crossref]

2006 (2)

2005 (2)

2004 (1)

2000 (1)

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

1998 (1)

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

1995 (1)

P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
[Crossref]

Akada, T.

Augsburger, M.

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

Bao, F.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Bigot, L.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Bouwmans, G.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Bufetov, I.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Bufetov, I. A.

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
[Crossref]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
[Crossref] [PubMed]

Bulatov, L. I.

Cao, R.

Chen, D.

Cheng, Y.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Dianov, E.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Dianov, E. M.

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
[Crossref]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
[Crossref] [PubMed]

Dirken, P.

P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
[Crossref]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

Douay, M.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Dvoyrin, V. V.

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Firstov, S. V.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Firstova, E. G.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Guo, X.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

Guryanov, A. N.

Henderson, G.

L. Soltay and G. Henderson, “The structure of lithium containing silicate and germanate glasses,” Can. Mineral. 43(5), 1643–1651 (2007).
[Crossref]

Hewak, D. W.

Holland, M.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

Hu, L.

Hu, Z.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Hughes, M. A.

Jiang, X.

Keding, R.

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

Khopin, V. F.

Kustov, E. F.

Li, H.

Lisiecki, R.

Liu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

Liu, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Ma, E.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Mashinsky, V. M.

Melkumov, M. A.

Meng, X.

Mercader, R.

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

Moesgaard, M.

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

Mountjoy, G.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

Newport, R.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

Nishchev, K. N.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Ohishi, Y.

Panov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Pedregosa, J.

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

Peng, M.

Perino, E.

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

Pickup, D.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Pynenkov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

Qiu, J.

Razdobreev, I.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Ren, G.

Ryba-Romanowski, W.

Semjonov, S. L.

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
[Crossref]

Sheng, Q.

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(18), 3067–3071 (2013).
[Crossref]

Shubin, A. V.

Skibsted, J.

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

Smith, M.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
[Crossref]

Solarz, P.

Soltay, L.

L. Soltay and G. Henderson, “The structure of lithium containing silicate and germanate glasses,” Can. Mineral. 43(5), 1643–1651 (2007).
[Crossref]

Song, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Strasser, E.

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

Su, L.

Suzuki, T.

Tang, H.

Tian, Y.

Umnikov, A. A.

Wallidge, G.

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

Wang, L.

Wang, Q.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

Wang, Y.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Whitfield, H.

P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
[Crossref]

Wondraczek, L.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi5(3+) in Bi5(AlCl4)3.,” Opt. Express 20(3), 2562–2571 (2012).
[Crossref] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Xu, J.

Xu, R.

Xu, S.

Yang, I.

Yang, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Yashkov, M. V.

Yin, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Yu, J.

Yu, P.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

Yu, Y.

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Yue, Y.

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

Zhang, J.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

Zhao, H.

Zhao, Y.

Zheng, L.

Zhou, D.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Zhou, P.

Zhou, Q.

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(18), 3067–3071 (2013).
[Crossref]

Zhu, C.

Zhu, K.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[Crossref]

Can. Mineral. (1)

L. Soltay and G. Henderson, “The structure of lithium containing silicate and germanate glasses,” Can. Mineral. 43(5), 1643–1651 (2007).
[Crossref]

Chem. Mater. (1)

M. Moesgaard, R. Keding, J. Skibsted, and Y. Yue, “Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses,” Chem. Mater. 22(15), 4471–4483 (2010).
[Crossref]

J. Alloys Compd. (1)

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloys Compd. 509(24), 6816–6818 (2011).
[Crossref]

J. Mater. Chem. (1)

D. Pickup, G. Mountjoy, M. Holland, G. Wallidge, R. Newport, and M. Smith, “Structure of (Ta2O5)x(SiO2)1-x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS,” J. Mater. Chem. 10(8), 1887–1894 (2000).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Q. Sheng, Q. Zhou, and D. Chen, “Efficient methods of obtaining good optical properties in Yb-Bi co-doped phosphate glasses,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(18), 3067–3071 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11), 2241–2245 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

P. Dirken, M. Smith, and H. Whitfield, “17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2-SiO2 materials,” J. Phys. Chem. 99(1), 395–401 (1995).
[Crossref]

J. Phys. Chem. Solids (1)

M. Augsburger, E. Strasser, E. Perino, R. Mercader, and J. Pedregosa, “FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure,” J. Phys. Chem. Solids 59(2), 175–180 (1998).
[Crossref]

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[Crossref]

Mater. Res. Bull. (1)

D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu, and Y. Cheng, “Luminescence at 1.53 um for a new Er3+-doped transparent oxyfluoride glass ceramic,” Mater. Res. Bull. 41(6), 1112–1117 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (1)

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2 glass system,” Opt. Mater. 34(4), 675–678 (2012).
[Crossref]

Quantum Electron. (2)

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quantum Electron. 43(2), 174–176 (2013).
[Crossref]

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46(1), 1–10 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Luminescence spectra of (90-x) SiO2-9Ta2O5-1Bi2O3-xLi2O (x = 10, 15, 20) at high temperatures (50-250°C) during different rounds of heating and cooling upon the excitation of 808 nm. Red curves stand for the heating process, and it starts at 50°C and ends at 250 °C, and the temperature is increased by a step of 50°C. Blue curves stand for the Cooling process, and it starts at 250°C and ends at 50 °C, and the temperature is decreased by a step of 50°C.
Fig. 2
Fig. 2 (a) 29Si MAS NMR spectra of (90-x) SiO2-9Ta2O5-1Bi2O3-xLi2O (x = 10, 15, 20) before and after annealed; Inset briefly illustrates how different types of silicon Q1, Q2, Q3 and Q4 atoms are linked via common oxygen; (b) absorption spectra of (90-x) SiO2-9Ta2O5-1Bi2O3-xLi2O (x = 10, 15, 20, 25, 30, 35; 40); (c) photoluminescence spectra of (90-x) SiO2-9Ta2O5-1Bi2O3-xLi2O (x = 10, 15, 20, 25, 30); (d) absorption spectra of (90-x) SiO2-9Ta2O5-1Bi2O3-xLi2O (x = 10, 15, 20) before (black curve) and after (red curves) annealed at 250°C for 30 min.

Metrics