Abstract

We present a new approach to high power fibre laser design, consisting of a polymer-free all-glass optical fibre waveguide directly overclad with a high thermal conductivity metal coating. This metal clad active fibre allows a significant reduction in thermal resistance between the active fibre and the laser heat-sink as well as a significant increase in the operating temperature range. In this paper we show the results of a detailed thermal analysis of both polymer and metal coated active fibres under thermal loads typical of kW fibre laser systems. Through several different experiments we present the first demonstration of a cladding pumped aluminium-coated fibre laser and the first demonstration of efficient operation of a cladding-pumped fibre laser at temperatures of greater than 400 °C. Finally, we highlight the versatility of this approach through operation of a passively (radiatively) cooled ytterbium fibre laser head at an output power of 405 W in a compact and ultralight package weighing less than 100 g.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier

Han Chi, Cory M. Baumgarten, Elzbieta Jankowska, Kristian A. Dehne, Gabe Murray, Alexander R. Meadows, Mark Berrill, Brendan A. Reagan, and Jorge J. Rocca
J. Opt. Soc. Am. B 36(4) 1084-1090 (2019)

High power operation of cladding pumped holmium-doped silica fibre lasers

Alexander Hemming, Shayne Bennetts, Nikita Simakov, Alan Davidson, John Haub, and Adrian Carter
Opt. Express 21(4) 4560-4566 (2013)

High power fiber lasers: current status and future perspectives [Invited]

D. J. Richardson, J. Nilsson, and W. A. Clarkson
J. Opt. Soc. Am. B 27(11) B63-B92 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010).
    [Crossref]
  2. K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
    [Crossref]
  3. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
    [Crossref] [PubMed]
  4. A. Méndez and T. Morse, Specialty Optical Fibers Handbook (2011).
  5. J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.
  6. J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
    [Crossref]
  7. C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
    [Crossref]
  8. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
    [Crossref]
  9. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  10. B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
    [Crossref]
  11. “For example 150 W into 105 0.15 NA @915 nm from BWT Beijing LTD,” http://www.bwt-bj.com/ .
  12. “For example 1200 W into 300 0.22 NA @975 nm from DiLas GmbH,” www.dilas.com/ .
  13. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
    [Crossref]
  14. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [Crossref]
  15. M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
    [Crossref]
  16. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express 19(16), 15162–15172 (2011).
    [Crossref] [PubMed]
  17. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).
  18. H. J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
    [Crossref] [PubMed]
  19. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref] [PubMed]
  20. A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
    [Crossref]
  21. S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
    [Crossref]
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
    [Crossref]
  23. J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
    [Crossref]
  24. J. M. O. Daniel, “Wavelength selection and transverse mode control in high power fibre lasers,” Ph.D Thesis, University of Southampton (2013).
  25. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
    [Crossref]
  26. D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
    [Crossref] [PubMed]
  27. J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
    [Crossref]
  28. S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
    [Crossref]
  29. J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
    [Crossref]
  30. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann, “152 W average power Tm-doped fiber CPA system,” Opt. Lett. 39(16), 4671–4674 (2014).
    [Crossref] [PubMed]

2016 (4)

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

2015 (1)

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

2014 (3)

2013 (1)

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

2012 (1)

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

2011 (5)

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express 19(16), 15162–15172 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

2008 (1)

2007 (3)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
[Crossref]

2004 (2)

B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
[Crossref]

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

2001 (1)

Abramczyk, J.

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Ahlert, S.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Andrekson, P. A.

Barnett, T.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Barty, C. P. J.

Bayer, A.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Beach, R. J.

Beier, F.

Beresna, M.

Bhunia, A.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Biesenbach, J.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Book, L. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).

Cain-Skaff, M.

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Campbell, J.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Chatigny, S.

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Clarkson, W. A.

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

Copeland, D. A.

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

Daniel, J. M. O.

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

D. Lin, J. M. O. Daniel, M. Gecevičius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, “Cladding-pumped ytterbium-doped fiber laser with radially polarized output,” Opt. Lett. 39(18), 5359–5361 (2014).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

Dawson, J. W.

Dianov, E. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Dong, J.

Dross, F.

Durkee, R.

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

Eberhardt, R.

Eschrich, T.

Fan, T. Y.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Fan, Y.

Farrow, R. L.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
[Crossref]

Foley, B.

B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
[Crossref]

Fuchs, F.

Gaida, C.

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

Gebhardt, M.

Gecevicius, M.

Goodno, G. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).

Grimm, S.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Guertin, D.

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Haarlammert, N.

Hansryd, J.

Haub, J.

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

He, B.

Heebner, J. E.

Hein, S.

Hemming, A.

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Hupel, C.

Ihring, J.

Jacobson, N.

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Jansen, F.

Jauregui, C.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Junghans, J.

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

Just, F.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Kazansky, P. G.

Kissel, H.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Knudsen, S. N.

Kobelke, J.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Koenning, T.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Kohler, B.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Kracht, D.

Krause, V.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Kuhn, S.

Kurkov, A. S.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Langner, A.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Lapointe, M.

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Leich, M.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Leisher, P.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Limpert, J.

Lin, D.

Litt, A. S.

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

Liu, H.

Lou, Q.

Maran, J.

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Mashanovitch, M.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Mehl, O.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
[Crossref]

Messerly, M. J.

Modsching, N.

Moore, S. W.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Moran, K. B.

B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
[Crossref]

Mühlig, C.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Muntz, H.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

Niedrig, R.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Noeske, A.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Nold, J.

Otto, H. J.

Paramonov, V. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Patterson, S.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Pax, P. H.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

Piché, M.

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Rehmann, G.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Reichardt, T. A.

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

Renner, D.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Richardson, D. J.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
[Crossref]

Rothenberg, J. E.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).

Rotter, K.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Sattler, B.

Schötz, G.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

Schreiber, T.

Schwuchow, A.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Segref, A.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Semenic, T.

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

Shatrovoy, O.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Simakov, N.

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

Skutnik, B. J.

B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Stoiber, M.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Strauch, O.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Stutzki, F.

Such, M.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
[Crossref] [PubMed]

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Tankala, K.

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Tünnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

Unger, A.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Vetrovec, J.

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

Wandt, D.

Wedel, B.

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

Wei, Y.

Westlund, M.

Wienke, A.

Wolf, P.

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

Yu, C. X.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Zeitner, U.

Zheng, J.

Zhou, J.

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86(3), 329–334 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

S. W. Moore, T. Barnett, T. A. Reichardt, and R. L. Farrow, “Optical properties of Yb3+-doped fibers and fiber lasers at high temperature,” Opt. Commun. 284(24), 5774–5780 (2011).
[Crossref]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun. 273(1), 256–259 (2007).
[Crossref]

Opt. Eng. (1)

K. Tankala, D. Guertin, J. Abramczyk, and N. Jacobson, “Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers,” Opt. Eng. 50(11), 111607 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (10)

J. Vetrovec, A. S. Litt, D. A. Copeland, J. Junghans, and R. Durkee, “Liquid metal heat sink for high-power laser diodes,” Proc. SPIE 8605, 86050E (2013).
[Crossref]

S. Patterson, T. Koenning, B. Kohler, S. Ahlert, A. Bayer, H. Kissel, H. Muntz, A. Noeske, K. Rotter, A. Segref, M. Stoiber, A. Unger, P. Wolf, and J. Biesenbach, “Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design,” Proc. SPIE 8381, 83810L (2012).
[Crossref]

J. Campbell, T. Semenic, P. Leisher, A. Bhunia, M. Mashanovitch, and D. Renner, “980nm diode laser pump modules operating at high temperature,” Proc. SPIE 9730, 97300G (2016).
[Crossref]

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal Effects in High Power CW Fiber Lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y (2009).

A. Langner, M. Such, G. Schötz, S. Grimm, F. Just, M. Leich, C. Mühlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, “New developments in high power fiber lasers based on alternative materials,” Proc. SPIE 7914, 79141U (2011).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “A double clad ytterbium fibre laser operating at 400°C,” Proc. SPIE 9344, 934414 (2015).
[Crossref]

B. J. Skutnik, B. Foley, and K. B. Moran, “High-numerical-aperture silica core fibers,” Proc. SPIE 5317, 39–45 (2004).
[Crossref]

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Passively cooled 405 W ytterbium fibre laser utilising a novel metal coated active fibre,” Proc. SPIE 9728, 972808 (2016).
[Crossref]

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Quantum Electron. (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Other (5)

A. Méndez and T. Morse, Specialty Optical Fibers Handbook (2011).

J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, “Ultra-high temperature operation of a tunable ytterbium fibre laser,” in Eur. Conf. Lasers Electro-Optics (2015), paper CJ_11_6.

“For example 150 W into 105 0.15 NA @915 nm from BWT Beijing LTD,” http://www.bwt-bj.com/ .

“For example 1200 W into 300 0.22 NA @975 nm from DiLas GmbH,” www.dilas.com/ .

J. M. O. Daniel, “Wavelength selection and transverse mode control in high power fibre lasers,” Ph.D Thesis, University of Southampton (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 A simplified fibre laser / amplifier arrangement with arrows indicating the typical points of high thermal load within the laser chain.
Fig. 2
Fig. 2 a) polymer clad active fibre with core, inner cladding and polymer dimensions of 20/250/400 µm (20/400/550 µm). b) Metal clad active fibre with core, inner cladding, outer cladding and metal dimensions of 20/250/260/350 µm (20/400/460/520 µm). c) Schematic of 550 µm (OD) active fibre embedded within a water-cooled aluminium heatsink, with slot width of 750 x 750 µm and surrounded by a thermally conductive interface material.
Fig. 3
Fig. 3 Thermal profiles for polymer coated (left) and metal coated (right) active fibres under a 100W/m thermal load and plotted for a range of interstitial material thermal conductivities. Peak core temperature (top) and peak outer cladding temperature (bottom) are plotted in pseudocolor over a 20 – 200 degree range with scale bar shown on right. Dotted lines indicate the data points used in Fig. 4. The raw data for these plots is available online.
Fig. 4
Fig. 4 Thermal profiles for polymer coated (solid lines) and metal coated (dashed lines) active fibres under a 100W/m thermal load and plotted for a range of interstitial material thermal conductivities. At an interstitial material thermal conductivity of 0.18 W/mK a 50°C & 40°C reduction in core temperature is seen for the case of a) 250 µm & b) 400 µm metal coated fibres.
Fig. 5
Fig. 5 Thermal profiles of a) polymer and b) metal coated fibre lasers under a 100W/m thermal load with an interstitial material thermal conductivity of 1W/mK and 5μm offset from heatsink base. Colour profile details temperature (°C, scale on right) and the density of the flux lines (shown in white) detail heat flow.
Fig. 6
Fig. 6 Maximum predicted a) core and b) cladding temperature as a function of thermal load for polymer clad (red) and metal clad (blue) active fibre designs.
Fig. 7
Fig. 7 Cross-sectional view of the metal coated active fibre with all-glass inner cladding and ytterbium doped core. Fibre dimensions were 20/200/230 μm with numerical apertures of 0.075 and 0.23 for core, inner cladding and outer cladding respectively.
Fig. 8
Fig. 8 Schematic of high temperature all-glass fibre laser slope efficiency measurements and diagnostics.
Fig. 9
Fig. 9 Experimental layout for both high power conductively and passively cooled ytterbium fibre laser measurements.
Fig. 10
Fig. 10 a) Laser output power for a fixed launched pump power of 57.4 W and increasing heat-sink temperature. b) Laser slope efficiency as a function of heat-sink temperature from 35°C to 400°C. (Insert) free running laser wavelength as a function of heatsink temperature.
Fig. 11
Fig. 11 Laser slope efficiency as a function of absorbed pump power for the metal coated active fibre.
Fig. 12
Fig. 12 a) Laser slope efficiency as a function of absorbed pump power (left axis) and laser power conversion efficiency (right axis). b) Laser output beam profile at maximum pump power.
Fig. 13
Fig. 13 Thermal profile of ultralight fibre gain module operating at a output power of 405 W and maximum operating temperature of 137 °C

Metrics