Abstract

Microstructured optical fibers, particularly those with a suspended-core geometry, have frequently been argued as efficient evanescent-field fluorescence-based sensors. However, to date there has not been a systematic comparison between such fibers and the more common geometry of a multi-mode fiber tip sensor. In this paper we make a direct comparison between these two fiber sensor geometries both theoretically and experimentally. Our results confirm that suspended-core fibers provide a significant advantage in terms of total collected fluorescence signal compared to multi-mode fibers using an equivalent experimental configuration.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation

Stephen C. Warren-Smith, Shahraam Afshar, and Tanya M. Monro
Opt. Express 18(9) 9474-9485 (2010)

Exposed-core microstructured optical fibers for real-time fluorescence sensing

Stephen C. Warren-Smith, Heike Ebendorff-Heidepriem, Tze Cheung Foo, Roger Moore, Claire Davis, and Tanya M. Monro
Opt. Express 17(21) 18533-18542 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  2. X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Anal. Chem. 88(1), 203–227 (2016).
    [Crossref] [PubMed]
  3. X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  4. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  5. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
    [Crossref]
  6. E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
    [Crossref]
  7. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
    [Crossref] [PubMed]
  8. E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.
  9. P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
    [Crossref]
  10. F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).
  11. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  12. E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
    [Crossref]
  13. S. C. Warren-Smith, G. Nie, E. P. Schartner, L. A. Salamonsen, and T. M. Monro, “Enzyme activity assays within microstructured optical fibers enabled by automated alignment,” Biomed. Opt. Express 3(12), 3304–3313 (2012).
    [Crossref] [PubMed]
  14. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).
  15. M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
    [Crossref] [PubMed]
  16. W. Henry, “Evanescent field devices: A comparison between tapered optical fibres and polished or d-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
    [Crossref]
  17. C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).
  18. L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
    [Crossref]
  19. C. M. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
    [Crossref] [PubMed]
  20. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
    [Crossref] [PubMed]
  21. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
    [Crossref] [PubMed]
  22. E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
    [Crossref] [PubMed]
  23. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
    [Crossref] [PubMed]
  24. S. Afshar V, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
    [Crossref] [PubMed]
  25. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: A generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
    [Crossref] [PubMed]
  26. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [Crossref]
  27. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  28. K. G. Casey and E. L. Quitevis, “Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine b in normal alcohols,” J. Phys. Chem. 92, 6590–6594 (1988).
  29. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  30. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  31. J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
    [Crossref]
  32. B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
    [Crossref] [PubMed]

2016 (1)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

2015 (3)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

2014 (1)

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

2013 (2)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

2012 (2)

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

S. C. Warren-Smith, G. Nie, E. P. Schartner, L. A. Salamonsen, and T. M. Monro, “Enzyme activity assays within microstructured optical fibers enabled by automated alignment,” Biomed. Opt. Express 3(12), 3304–3313 (2012).
[Crossref] [PubMed]

2011 (2)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

2010 (3)

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: A generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (5)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

2006 (1)

2004 (2)

2000 (1)

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1995 (1)

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

1994 (1)

W. Henry, “Evanescent field devices: A comparison between tapered optical fibres and polished or d-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[Crossref]

1991 (1)

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

1988 (1)

K. G. Casey and E. L. Quitevis, “Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine b in normal alcohols,” J. Phys. Chem. 92, 6590–6594 (1988).

Abell, A.

E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.

Abell, A. D.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Afshar, S.

Afshar V, S.

Arden, J.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Arregui, F. J.

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

Bariain, C.

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

Barretto, E. C.

Barth, M.

Benson, O.

Bjarklev, A.

Bosch, M. E.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

Breslin, K. A.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Brito Cruz, C. H.

Caldas, P.

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Carlsen, A.

Casey, K. G.

K. G. Casey and E. L. Quitevis, “Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine b in normal alcohols,” J. Phys. Chem. 92, 6590–6594 (1988).

Charles, P. T.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Chesini, G.

Chu, F.

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

Conrad, D. W.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Cordeiro, C. M.

Corradini, R.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Coscelli, E.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Cucinotta, A.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Deltau, G.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Drexhage, K. H.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Ebendorff-Heidepriem, H.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

Folkenberg, J. R.

Franco, M. A.

François, A.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Gawlik, W.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Golden, J. P.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Golunski, M.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Grabka, M.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Hansen, T. P.

Heng, S.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Henry, W.

W. Henry, “Evanescent field devices: A comparison between tapered optical fibres and polished or d-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[Crossref]

Hoiby, P. E.

Huth, V.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Jensen, J. B.

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

Jorge, P.

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Klantsataya, E.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kostecki, R.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Kotas, D.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Kringel, U.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Large, M. C.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).

Ligler, F. S.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lopez-Amo, M.

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Lu, Z.

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

Lwin, R.

Marchelli, R.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Matías, I. R.

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

Monro, T.

E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.

Monro, T. M.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

S. C. Warren-Smith, G. Nie, E. P. Schartner, L. A. Salamonsen, and T. M. Monro, “Enzyme activity assays within microstructured optical fibers enabled by automated alignment,” Biomed. Opt. Express 3(12), 3304–3313 (2012).
[Crossref] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: A generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. Afshar V, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).

Nguyen, L. V.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Nie, G.

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Ojeda, C. B.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

Oliva, A.

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Passaro, D.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Pedersen, L. H.

Peros, D.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

Pietsch, M.

E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Poli, F.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Purdey, M. S.

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

Pustelny, S.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Quitevis, E. L.

K. G. Casey and E. L. Quitevis, “Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine b in normal alcohols,” J. Phys. Chem. 92, 6590–6594 (1988).

Reynolds, T.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Riishede, J.

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Rojas, F. S.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

Rosa, C.

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Rowland, K. J.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Ruan, Y.

Rygula, A.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Salamonsen, L. A.

Sánchez, A. J. R.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

Santos, J.

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Schartner, E.

E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.

Schartner, E. P.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

S. C. Warren-Smith, G. Nie, E. P. Schartner, L. A. Salamonsen, and T. M. Monro, “Enzyme activity assays within microstructured optical fibers enabled by automated alignment,” Biomed. Opt. Express 3(12), 3304–3313 (2012).
[Crossref] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Selleri, S.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).

Shriver-Lake, L. C.

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Smolka, S.

Sozzi, M.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Spooner, N. A.

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

Thompson, J. G.

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

Tsiminis, G.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

Uminska, A.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Wajnchold, B.

B. Wajnchold, M. Grabka, A. Umińska, A. Ryguła, D. Kotas, M. Gołuński, S. Pustelny, and W. Gawlik, “Adsorption of cationic organic dyes in suspended-core fibers,” Opt. Lett. 48-49(8), 1647–1650 (2015).
[Crossref] [PubMed]

Wang, X.-D.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Warren-Smith, S. C.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

S. C. Warren-Smith, G. Nie, E. P. Schartner, L. A. Salamonsen, and T. M. Monro, “Enzyme activity assays within microstructured optical fibers enabled by automated alignment,” Biomed. Opt. Express 3(12), 3304–3313 (2012).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: A generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. Afshar V, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
[Crossref] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

Wolfbeis, O. S.

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Anal. Chem. (3)

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2013–2015),” Anal. Chem. 88(1), 203–227 (2016).
[Crossref] [PubMed]

X.-D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, “Detection of tnt in water using an evanescent wave fiber-optic biosensor,” Anal. Chem. 67(14), 2431–2435 (1995).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: Pna-modified suspended-core photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron. 16(4), 967–972 (2010).
[Crossref]

Int. J. Appl. Glass Sci. (1)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

J. Lumin. (1)

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48, 352–358 (1991).
[Crossref]

J. Phys. Chem. (1)

K. G. Casey and E. L. Quitevis, “Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine b in normal alcohols,” J. Phys. Chem. 92, 6590–6594 (1988).

Langmuir (1)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-ir using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Nanoscale (1)

E. P. Schartner, D. Jin, H. Ebendorff-Heidepriem, J. A. Piper, Z. Lu, and T. M. Monro, “Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization,” Nanoscale 4(23), 7448–7451 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (2)

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

W. Henry, “Evanescent field devices: A comparison between tapered optical fibres and polished or d-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[Crossref]

Sens. Actuators B Chem. (1)

P. Jorge, P. Caldas, C. Rosa, A. Oliva, and J. Santos, “Optical fiber probes for fluorescence based oxygen sensing,” Sens. Actuators B Chem. 103(1-2), 290–299 (2004).
[Crossref]

Sensor. Actuat. Biol. Chem. (3)

F. Chu, G. Tsiminis, N. A. Spooner, and T. M. Monro, “Explosives detection by fluorescence quenching of conjugated polymers in suspended core optical fibers,” Sensor. Actuat. Biol. Chem. 199, 22–26 (2014).

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensor. Actuat. Biol. Chem. 125, 688–703 (2007).

C. Bariain, I. R. Matías, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat. Biol. Chem. 69, 127–131 (2000).

Sensors (Basel) (3)

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel) 11(12), 2961–2971 (2011).
[Crossref] [PubMed]

M. S. Purdey, J. G. Thompson, T. M. Monro, A. D. Abell, and E. P. Schartner, “A dual sensor for ph and hydrogen peroxide using polymer-coated optical fibre tips,” Sensors (Basel) 15(12), 31904–31913 (2015).
[Crossref] [PubMed]

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors (Basel) 7(6), 797–859 (2007).
[Crossref]

Other (1)

E. Schartner, M. Pietsch, A. Abell, and T. Monro, “A hydrogen peroxide fibre optic dip sensor for aqueous solutions,” in Australasian Conference on Optics, Lasers and Spectroscopy(2009:Adelaide, Australia), 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental configuration for measurements of emitted fluorescence power for both multi-mode (10x microscope objective) and SCFs (60x microscope objective). A calibrated photodiode was used as the detector for these trials.
Fig. 2
Fig. 2 Silica SCFs used for fluorescence experiments. (a) Full geometry, 125 µm outer diameter with 15 µm holes. (b) Core structure, with a core diameter of 1.38 µm.
Fig. 3
Fig. 3 Schematic of the theoretical power capture into the collection cone of an emitter located a fixed distance away from the tip of a MMF
Fig. 4
Fig. 4 Fluorescence Capture for MMFs, showing comparison between experimental (filled symbols) and theoretical (open symbols) for (a) 62.5µm core diameter (NA = 0.275) MMFs and (b) 105 µm core diameter (NA = 0.22) MMFs.
Fig. 5
Fig. 5 Fluorescence power captured for suspended core optical fibers, showing comparison between experimental (filled symbols) and theoretical (open symbols) across the full range of excitation powers used.
Fig. 6
Fig. 6 Comparison of experimentally measured fluorescence between suspended core and multi-mode fibers.
Fig. 7
Fig. 7 Fluorescence power captured per unit input power for 10 nM Rhodamine B in ethanol (a) Multi-mode tip sensors for step index fibers of varied diameters (0.22,0.39) and graded-index (0.275) (b) Silica SCF

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CF= 1 4π A e | u |α z | u | 3/2 dA

Metrics