Abstract

As a novel imaging method, ghost imaging has been widely explored in various fields of research, such as lensless ghost imaging, computational ghost imaging, turbulence-free ghost imaging. Recently, ghost imaging in non-degenerated system with pseudo-thermal light has been discussed theoretically, however, to our best knowledge, no experimental evidence has been proven yet. In this paper, we propose a new approach to realize ghost imaging with different frequencies, which are generated through a non-degenerated four-wave mixing(FWM) process in Rb vapor. In our experiment, by employing pseudo-thermal light as the probe beam, we found that the generated FWM signal has a strong second-order correlation with the original thermal light. On basis of that, we successfully implement non-degenerate ghost imaging, and reconstruct highly similar images of objects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-degenerate wavelength computational ghost imaging with thermal light

Deyang Duan, Zhongxiao Man, and Yunjie Xia
Opt. Express 27(18) 25187-25195 (2019)

Characteristic properties of the spatial correlations and visibility in mixed light ghost imaging

Sébastien Hartmann, Simone Kuhn, and Wolfgang Elsässer
Appl. Opt. 55(28) 7972-7979 (2016)

Non-diffractive computational ghost imaging

D. B. Phillips, Ruiqing He, Qian Chen, G. M. Gibson, and M. J. Padgett
Opt. Express 24(13) 14172-14182 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
    [Crossref] [PubMed]
  3. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
    [Crossref] [PubMed]
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [Crossref] [PubMed]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref] [PubMed]
  7. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref] [PubMed]
  8. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  9. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B.Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068 (2013).
    [Crossref] [PubMed]
  10. B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
    [Crossref] [PubMed]
  11. J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref] [PubMed]
  12. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
    [Crossref]
  13. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
    [Crossref]
  14. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
    [Crossref]
  15. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
    [Crossref] [PubMed]
  16. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. R. A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, M. J. Padgett, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049 (2015).
    [Crossref]
  17. C. C. Kim and G. Kanner, “Infrared two-color ghost imaging using entangled beams,” Proc. SPIE 7815, 781503 (2010).
    [Crossref]
  18. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
    [Crossref]
  19. M. T. Cao, Y. Yu, L. Y. Zhang, F. J. Ye, Y. L. Wang, D. Wei, P. Zhang, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, “Demonstration of CNOT gate with Laguerre Gaussian beams via four-wave mixing in atom vapor,” Opt. Express 22, 20177 (2014).
    [Crossref] [PubMed]
  20. D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, “Generation of Airy beams by four-wave mixing in Rubidium vapor cell,” Opt. Lett. 39, 4557 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B.Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068 (2013).
[Crossref] [PubMed]

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

2012 (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

2011 (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
[Crossref]

2010 (1)

C. C. Kim and G. Kanner, “Infrared two-color ghost imaging using entangled beams,” Proc. SPIE 7815, 781503 (2010).
[Crossref]

2009 (1)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

2008 (2)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2005 (2)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

2001 (1)

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

1995 (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Aspden, R. S.

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Bowman, A.

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Bowman, R.

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B.Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068 (2013).
[Crossref] [PubMed]

Boyd, R. W.

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. R. A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, M. J. Padgett, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049 (2015).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Buller, G. S.

Cao, M. T.

Chan, K. W. C.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Cheng, J.

J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[Crossref]

Ding, D. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

Edgar, M. P.

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B.Q. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068 (2013).
[Crossref] [PubMed]

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Gao, H.

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Gemmell, N. R.

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

Guo, W. G.

Hadfield, R. H.

Han, S. S.

J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Jonathan, P.

Kanner, G.

C. C. Kim and G. Kanner, “Infrared two-color ghost imaging using entangled beams,” Proc. SPIE 7815, 781503 (2010).
[Crossref]

Kim, C. C.

C. C. Kim and G. Kanner, “Infrared two-color ghost imaging using entangled beams,” Proc. SPIE 7815, 781503 (2010).
[Crossref]

Kirkwood, R. A.

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Lapkiewicz, R.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Lemos, G. B.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Li, F. L.

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Mertens, L.

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
[Crossref]

Morris, P. A.

O’Sullivan, M. N.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

Padgett, M. J.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Saleh, B. E. A.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Sun, B. Q.

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Sun, B.Q.

Tanner, M. G.

Tasca, D. S.

Teich, M. C.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

Tosi, A. R. A.

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Vittert, L. E.

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Wang, Y. L.

Wei, D.

Welsh, S.

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Welsh, S. S.

Ye, F. J.

Yu, Y.

Zeilinger, A.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Zhang, L. Y.

Zhang, P.

Zhang, S. G.

Zhou, Z. Y.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

Zou, X. B.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

AIP Advances (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Advances 2, 032177(2012).
[Crossref]

App. Phys. Lett. (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” App. Phys. Lett. 98, 111115 (2011).
[Crossref]

Nature (1)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (4)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

J. Cheng and S. S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

C. C. Kim and G. Kanner, “Infrared two-color ghost imaging using entangled beams,” Proc. SPIE 7815, 781503 (2010).
[Crossref]

Science (1)

B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Color online) (a)A typical FWM process. F, B, and P present the forward pump beam, the backward pump beam, and the probe beam, respectively. (b)The corresponding energy diagram and transition lines of 85Rb in the non-degenerate FWM process.
Fig. 2
Fig. 2 The experimental setup of measuring (a)the second-order correlation and (b)implementing the ghost imaging in FWM. (a)Three external cavity diode lasers(not shown) are used to couple with three single mode optical fibers. The probe beam becomes pseudo-thermal light after passing through a rotating ground glass. Then the thermal light is separated into two parts by a PBS. The reflected part with vertical polarization is sent into a vapor cell as the probe beam and thus generates the signal by FWM, while the transmission part is directly reflected by a mirror. Both of these two beams are collected by a CCD camera with the same optical length. (b)An object is put in one of the beam paths, and the speckle patterns passing through it will be collected as the bucket detection for implementing the ghost imaging. SMF:single mode optical fiber; L:lens; Ms: mirrors; HWPs:half-wave plates; PBS:polarization beam splitter; BSs:beam splitters; CCD:charge coupled device camera.
Fig. 3
Fig. 3 (a) and (b) are speckle patterns of the object beam and the reference beam.
Fig. 4
Fig. 4 The photoncount distribution of (a)the probe beam, (b)the FWM signal beam and (c)a Gaussian beam, respectively. The ordinate is the probability, while the abscissa is photon counts.
Fig. 5
Fig. 5 The experiment results to test the second-order correlation. (a)The second-order correlated function of a random spot on one of the speckle patterns and all spots on the other one.(b)The corresponding cross-section of (a).
Fig. 6
Fig. 6 The experimental results. (a) and (d) are images when a mask is illuminated by thermal light. (b) and (e) depict the reconstructed images of a double-slit and a X-shape transmission objects(insets), obtained by 10000 frames of two speckle patterns. (c) and (f) are results of complementary experiments we mentioned in text, also with 10000 frames of two speckle patterns.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( x a , x b ) = I ( x a ) I ( x b ) I ( x a ) I ( x b ) ,
g ( 2 ) = 1 N i = 1 N I O ( i ) I R ( i ) ( r ) 1 N 2 i = 1 N I O ( i ) i = 1 N I R ( i ) ( r ) ,

Metrics