Abstract

We propose a novel plasmonic photodetector with high responsivity, utilizing nano-scale active regions. This design can be applied to diverse materials (group III-V or IV materials) and different operation wavelengths covering the O-U bands. The periodic structure utilizing Surface Plasmon Polariton Bloch Waves (SPP-BWs) has low optical power loss. FDTD simulation shows an absorptance of 74.4% which means a responsivity of about 0.74 A/W at 1550 nm. The low capacitance brings low noise, reduced power consumption, and a high electrical bandwidth which is estimated to be 140 GHz. Among the plasmonic PDs with inherent high speeds but low responsivities, our design makes the obvious progress on improving the absorptance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D Nanopillar optical antenna photodetectors

Pradeep Senanayake, Chung-Hong Hung, Joshua Shapiro, Adam Scofield, Andrew Lin, Benjamin S. Williams, and Diana L. Huffaker
Opt. Express 20(23) 25489-25496 (2012)

Nanoscale plasmonically enhanced photodetector based on a gold nanoring

S. M. R. Safaee, A. PilAli, and M. A. Karami
Appl. Opt. 56(3) 476-481 (2017)

Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe

Jingshu Guo, Zhiwei Wu, and Yanli Zhao
Opt. Express 25(9) 10057-10069 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
    [Crossref]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  5. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
    [Crossref]
  6. A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
    [Crossref] [PubMed]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  8. F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
    [Crossref] [PubMed]
  9. J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
    [Crossref] [PubMed]
  10. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [Crossref] [PubMed]
  11. H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).
  12. P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
    [Crossref] [PubMed]
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  14. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [Crossref]
  15. P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
    [Crossref] [PubMed]
  16. S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
    [Crossref]
  17. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [Crossref] [PubMed]
  18. P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
    [Crossref] [PubMed]
  19. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “−1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
    [Crossref]
  20. FDTD Solutions, Lumerical Solutions Inc., Vancouver, Canada.
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. http://www.filmetrics.com/refractive-index-database/InGaAs/GaInAs-Indium-Gallium-Arsenide
  24. http://www.filmetrics.com/refractive-index-database/Si3N4/Silicon-Nitride-SiN-SiON
  25. F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
    [Crossref] [PubMed]
  26. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
    [Crossref]
  27. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
    [Crossref]
  28. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [Crossref] [PubMed]
  29. S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5, 15339 (2015).
    [Crossref] [PubMed]
  30. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
    [Crossref]
  31. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  32. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466 (1956).
  33. G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).
  34. W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
    [Crossref] [PubMed]
  35. S. Muehlbrandt, A. Melikyan, K. Köhnle, T. Harter, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Plasmonic internal photoemission detectors with responsivities above 0.12 A/W,” in CLEO:2015 (Optical Society of America, 2015), pp. FTh3E.3.
  36. http://www.corning.com/worldwide/en/products/communication-networks/products/fiber/smf-28e-.html
  37. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, 1981).
  38. J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
    [Crossref]

2016 (2)

2015 (1)

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5, 15339 (2015).
[Crossref] [PubMed]

2014 (3)

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
[Crossref]

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
[Crossref]

2013 (1)

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

2010 (3)

J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express 18(4), 3672–3686 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).

2009 (3)

2008 (1)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

2004 (1)

2003 (2)

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
[Crossref] [PubMed]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1987 (1)

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466 (1956).

Absil, P.

Ang, K. W.

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Balakrishnan, S.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[Crossref] [PubMed]

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

Berini, P.

S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
[Crossref]

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
[Crossref]

Bowers, J. E.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

Brongersma, M. L.

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[Crossref] [PubMed]

Brueck, S. R. J.

Burrus, C. A.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cao, L.

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

Chandran, A.

Chen, H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Darmanyan, S. A.

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

De Coster, J.

De Fornel, F.

A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
[Crossref] [PubMed]

De Heyn, P.

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Fan, P.

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

Fan, S.

Farrell, A. C.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

Gao, H.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

Huang, K. C.

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

Huffaker, D. L.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Hung, C. H.

Hung, C.-H.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Jagadish, C.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Krishna, S.

Kwong, D. L.

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Latif, S.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Lee, S. C.

Lee, W.-J.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

Lepage, G.

Lezec, H.

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Liang, B.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Lin, A.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Lo, G. Q.

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Lu, H.

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

MacLean, S.

S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
[Crossref]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Miller, D. A. B.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Mokkapati, S.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5, 15339 (2015).
[Crossref] [PubMed]

Mousavi, S. S.

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Odom, T. W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Painter, O.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Plant, D. V.

S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
[Crossref]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

Ren, F. F.

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Roelkens, G.

Rosenberg, J.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466 (1956).

Salomon, L.

A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
[Crossref] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Saxena, D.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5, 15339 (2015).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Scofield, A.

Senanayake, P.

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Shapiro, J.

P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Shen, L.

Shenoi, R. V.

Stöhr, A.

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
[Crossref]

Tan, H. H.

Tang, L.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Thio, T.

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Van Campenhout, J.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Verheyen, P.

Veronis, G.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Williams, B. S.

P. Senanayake, C. H. Hung, J. Shapiro, A. Scofield, A. Lin, B. S. Williams, and D. L. Huffaker, “3D nanopillar optical antenna photodetectors,” Opt. Express 20(23), 25489–25496 (2012).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Xu, W. Z.

Yao, W.

Ye, J.

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Yu, M.

F. F. Ren, W. Z. Xu, J. Ye, K. W. Ang, H. Lu, R. Zhang, M. Yu, G. Q. Lo, H. H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull’s eye antennas,” Opt. Express 22(13), 15949–15956 (2014).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

Yu, Z.

Zayats, A. V.

A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
[Crossref] [PubMed]

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

Zhang, R.

Zhou, W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).

Adv. Funct. Mater. (1)

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

S. S. Mousavi, A. Stöhr, and P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth,” Appl. Phys. Lett. 104(14), 143112 (2014).
[Crossref]

Electron. Lett. (1)

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[Crossref]

J. Microsc. (1)

A. V. Zayats, L. Salomon, and F. De Fornel, “How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals,” J. Microsc. 210(3), 344–349 (2003).
[Crossref] [PubMed]

Nano Lett. (4)

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

F. F. Ren, K. W. Ang, J. Ye, M. Yu, G. Q. Lo, and D. L. Kwong, “Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[Crossref] [PubMed]

P. Fan, K. C. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett. 13(2), 392–396 (2013).
[Crossref] [PubMed]

W.-J. Lee, P. Senanayake, A. C. Farrell, A. Lin, C.-H. Hung, and D. L. Huffaker, “High quantum efficiency nanopillar photodiodes overcoming the diffraction limit of light,” Nano Lett. 16(1), 199–204 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Nat. Phys. (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[Crossref]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (2)

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

S. MacLean, D. V. Plant, and P. Berini, “Surface plasmon enhanced optoelectronics,” Proc. SPIE 9288, 928819 (2014).
[Crossref]

Sci. Rep. (1)

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5, 15339 (2015).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466 (1956).

Other (8)

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).

FDTD Solutions, Lumerical Solutions Inc., Vancouver, Canada.

S. Muehlbrandt, A. Melikyan, K. Köhnle, T. Harter, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Plasmonic internal photoemission detectors with responsivities above 0.12 A/W,” in CLEO:2015 (Optical Society of America, 2015), pp. FTh3E.3.

http://www.corning.com/worldwide/en/products/communication-networks/products/fiber/smf-28e-.html

S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, 1981).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

http://www.filmetrics.com/refractive-index-database/InGaAs/GaInAs-Indium-Gallium-Arsenide

http://www.filmetrics.com/refractive-index-database/Si3N4/Silicon-Nitride-SiN-SiON

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic of the proposed device: (a) overview; (b) top view; (c) structure of a unit cell; (d) cross-section in x-z plane.
Fig. 2
Fig. 2 Period P versus wavelength for different dielectric refractive indices when metal is (a) Ag, (b) Al, (c) Au. The wavelength dependent refractive indices of Si3N4 and SiO2 are plotted in (a). (d) Absorptance η versus wavelength with parameters: hm = 0.22 μm, hd = 0.2 μm, hsub = 0.7 μm, wetch = 0.27 μm, wx = wy = 0.21 μm. Materials are InGaAs, Si3N4, and InP for the active region, dielectric layer, and substrate, respectively.
Fig. 3
Fig. 3 (a) Absorptance η versus hd and hsub at 1550 nm. (b) Absorptance η versus wavelength with hd = 0.2 μm, hsub = 0.7 μm. The other parameters: hm = 0.22 μm, p = 0.68 μm, wetch = 0.27 μm, wx = wy = 0.21 μm.
Fig. 4
Fig. 4 Schematic diagram of the coupling between the incident light and the slot Surface Plasmon modes when the dielectric layer is (a) too thin, (b) suitable, (c) too thick, the orange lines denote roughly the slot Surface Plasmon mode intensity distributions.
Fig. 5
Fig. 5 Absorptance η versus wavelength and wetch, the other parameters: hm = 0.22 μm, hd = 0.2 μm, hsub = 0.7 μm, wx = wy = 0.21 μm, P = 0.68 μm.
Fig. 6
Fig. 6 | E | = | E x | 2 + | E y | 2 + | E z | 2 (normalized to Esource) in x-z plane in the center of one cell at wavelength (a) 1400 nm, (b) 1550 nm, (c) 1700 nm, in x-y plane in the center of metal layer at wavelength (d) 1400 nm, (e) 1550 nm, (f) 1700 nm, Parameters: hm = 0.22 μm, hd = 0.2 μm, hsub = 0.7 μm, wx = wy = 0.21 μm, P = 0.68 μm, wetch = 0.27 μm.
Fig. 7
Fig. 7 Absorptance η versus wavelength with parameters: hd = 0.3 μm, hsub = 0.6 μm, wetch = 0.27 μm, wx = wy = 0.21 μm, P = 0.68 μm.
Fig. 8
Fig. 8 Normalized absorption cross section (NACS) values from LSPR simulations and periodic simulations versus wavelength and P with device parameters: hm = 0.22 μm, hd = 0.2μm, hsub = 0.7μm, wetch = 0.27μm, (a) wx = wy = 0.15 μm (b) wx = wy = 0.22 μm.
Fig. 9
Fig. 9 Absorptance versus wavelength and P with device parameters: hm = 0.22 μm, hd = 0.2 μm, hsub = 0.7 μm, wetch = 0.27 μm,wx = wy = (a) 0.07 μm,(b) 0.1 μm, (c) 0.15 μm, (d) 0.2 μm, (e) 0.21 μm, (f) 0.22 μm.
Fig. 10
Fig. 10 Approximation of the dielectric layer utilizing equivalent medium theory.
Fig. 11
Fig. 11 FDTD Bandstructure for varied wx&y = (a) 0 μm, (b) 0.07 μm, (c) 0.12 μm, (d) 0.17 μm, (e) 0.22 μm. Other parameters: hm = 0.22 μm, hd = 0.2 μm, hsub = 0.7 μm, wetch = 0.27 μm, P = 0.63 μm.
Fig. 12
Fig. 12 | E | = | E x | 2 + | E y | 2 + | E z | 2 (normalized to Esource) at 1550 nm (a) in x-z plane in the center of one cell ;(b) in x-y plane in the center of metal layer.(c) Absorptance η and responsivity on the left and right vertical axes, respectively.
Fig. 13
Fig. 13 (a) Overall view of the far-field calculation in both Cartesian and polar coordinates, (b) detailed structure of the part in the circle of overall view diagram, (c) far-field |Ex| component distribution in polar coordinate with λ = 1550 nm, N = 20, L = 70 μm, inset: enlarged view of far-field and mode field of commercial SMF-28 fiber.
Fig. 14
Fig. 14 Schematic illustration of the fabrication procedure.
Fig. 15
Fig. 15 (a) Average electric field intensity (AE) and (b) absorptance η versus wavelength for the same structure with varied mesh dimensions. Device parameters: hm = 0.22 μm, hd = 0.2μm, hsub = 0.7 μm, wetch = 0.27μm, wx = wy = 0.1μm, P = 0.68 μm. Materials are Ag, InGaAs, Si3N4, and InP for the metal layer, active region, dielectric layer, and substrate, respectively.

Tables (1)

Tables Icon

Table 1 Parameter and performance comparisons between typical plasmonic PDs.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N A C S = v a b s 1 2 ω i m a g ( ε ) | E | 2 d V I s o u r c e A a b s ,
η = N A C S A a b s A s o u r c e = N A C S R A ,
A E = v a b s | E | 2 d V V a b s / E s o u r c e .
2 π λ Re ( ε m ε d ε m + ε d ) = 2 π P i 2 + j 2 ,
n c e n t e r = f n a b s 2 + ( 1 f ) n d 2 ,
n e q u = f n c e n t e r 2 + ( 1 f ) n d 2 = f 2 n a b s 2 + ( 1 f 2 ) n d 2 .
( k i n p l a n e ± 2 π P i ) 2 + ( 2 π P j ) 2 = 2 π λ Re ( ε m ε d ε m + ε d ) .
R e s p = η η i q h ν ,
C T = w x w y ε r ε 0 X D ,
X D = V D ( 2 ε r ε 0 q ) ( N A + N D N A N D ) ,
f R C = 1 / ( 2 π R C ) = 151 G H z .
f t r a n s i t = 0.44 ν s a t / X D = 377.4 G H z .
f 3 d B = 1 f R C 2 + f t r a n s i t 2 = 140 G H z .

Metrics