Abstract

An optimization for multilayered nanotubes that minimizes the scattering efficiency for a given polarization is derived. The cylindrical nanocavities have a radially periodic distribution, and the marginal layers that play a crucial role particularly in the presence of nonlocalities are disposed to reduce the scattering efficiency up to two orders of magnitude in comparison with previous proposals. The predominant causes leading to such invisibility effect are critically discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres

Lin Zhang, Yan Shi, and Chang-Hong Liang
Opt. Express 24(20) 23333-23352 (2016)

Scattering cancellation of the magnetic dipole field from macroscopic spheres

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer
Opt. Express 20(13) 13896-13906 (2012)

Broadband electromagnetic transparency by graded metamaterials: scattering cancellation scheme

L. Sun and K. W. Yu
J. Opt. Soc. Am. B 28(5) 994-1001 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [Crossref]
  4. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  5. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
    [Crossref] [PubMed]
  6. S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
    [Crossref]
  7. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
    [Crossref]
  8. P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
    [PubMed]
  9. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
    [Crossref]
  10. J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
    [Crossref]
  11. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
    [Crossref]
  12. M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
    [Crossref] [PubMed]
  13. K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
    [Crossref] [PubMed]
  14. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
    [Crossref]
  15. C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
    [Crossref]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [Crossref]
  17. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. l. general theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [Crossref]
  18. H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer, numerical values,” IEEE Trans. Antennas Propag. 23, 723–725 (1975).
    [Crossref]
  19. G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc. 148, 93–102 (1970).
    [Crossref]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  21. A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
    [Crossref]
  22. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
    [Crossref]
  23. S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
    [Crossref]
  24. C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
    [Crossref]
  25. D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves,” Phys. Rev. Lett. 103, 064301 (2009).
    [Crossref] [PubMed]
  26. H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
    [Crossref]
  27. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  28. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
    [Crossref]
  29. D. E. Aspnes, “Plasmonics and effective medium theory,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 203–224.
    [Crossref]
  30. C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Tunable scattering cancellation of light using anisotropic cylindrical cavities,” Plasmonics, to be published (2016).
  31. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
    [Crossref]
  32. H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A 86, 033825 (2012).
    [Crossref]
  33. J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
    [Crossref]

2016 (1)

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
[Crossref]

2015 (7)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
[Crossref]

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
[Crossref]

2014 (1)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

2012 (4)

H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A 86, 033825 (2012).
[Crossref]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
[PubMed]

2009 (3)

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
[Crossref]

D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves,” Phys. Rev. Lett. 103, 064301 (2009).
[Crossref] [PubMed]

2007 (2)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

2006 (2)

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[Crossref]

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

2001 (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

1997 (1)

A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
[Crossref]

1977 (1)

1975 (1)

H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer, numerical values,” IEEE Trans. Antennas Propag. 23, 723–725 (1975).
[Crossref]

1970 (1)

G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc. 148, 93–102 (1970).
[Crossref]

Alu, A.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Alù, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
[PubMed]

Arruda, T. J.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, “Plasmonics and effective medium theory,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 203–224.
[Crossref]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Belov, P. A.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

Bilotti, F.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

Bussey, H. E.

H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer, numerical values,” IEEE Trans. Antennas Propag. 23, 723–725 (1975).
[Crossref]

Caballero, M. T.

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Chang, S.

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Chen, H. L.

H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A 86, 033825 (2012).
[Crossref]

Chen, P.-Y.

P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
[PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Choi, J.-H.

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Chu, P. K.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Díaz-Aviñó, C.

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
[Crossref]

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Tunable scattering cancellation of light using anisotropic cylindrical cavities,” Plasmonics, to be published (2016).

Edwards, B.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Elson, M.

S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[Crossref]

Engheta, N.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Feng, S.

S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Filonov, D. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

Gao, L.

H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A 86, 033825 (2012).
[Crossref]

Helaly, A.

A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
[Crossref]

Hong, C.-S.

Huang, G.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Kettunen, H.

H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Kim, K.-H.

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Limonov, M. F.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Martinez, A. S.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
[Crossref]

Megahed, A. A.

A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
[Crossref]

Mei, Y.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Miret, J. J.

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

Monti, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Naserpour, M.

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
[Crossref]

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Tunable scattering cancellation of light using anisotropic cylindrical cavities,” Plasmonics, to be published (2016).

No, Y.-S.

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Overfelt, P.

S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[Crossref]

Park, H.-G.

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Pastor, D.

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Pinheiro, F. A.

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
[Crossref]

Podolskiy, V. A.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Richmond, J. H.

H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer, numerical values,” IEEE Trans. Antennas Propag. 23, 723–725 (1975).
[Crossref]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Rybin, M. V.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Sánchez-Dehesa, J.

D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves,” Phys. Rev. Lett. 103, 064301 (2009).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Shah, G. A.

G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc. 148, 93–102 (1970).
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Shamonina, E.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Sihvola, A.

H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
[Crossref]

Silveirinha, M. G.

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Soliman, E. A.

A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
[Crossref]

Solymar, L.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

Soric, J.

P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
[PubMed]

Soric, J. C.

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Torrent, D.

D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves,” Phys. Rev. Lett. 103, 064301 (2009).
[Crossref] [PubMed]

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Tricarico, S.

S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
[Crossref]

Vegni, L.

S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
[Crossref]

Wallén, H.

H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
[Crossref]

Wang, J.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Yariv, A.

Yeh, P.

Zapata-Rodríguez, C. J.

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
[Crossref]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Tunable scattering cancellation of light using anisotropic cylindrical cavities,” Plasmonics, to be published (2016).

Zhan, T.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Adv. Mater. (1)

P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24, OP281 (2012).
[PubMed]

Appl. Phys. Lett. (1)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).
[Crossref]

Electron. Lett. (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Imaging, compression and Poynting vector streamlines with negative permittivity materials,” Electron. Lett. 37, 1243–1244 (2001).
[Crossref]

IEE Proc-Microw. Antennas Propag. (1)

A. Helaly, E. A. Soliman, and A. A. Megahed, “Electromagnetic waves scattering by nonuniform plasma cylinder,” IEE Proc-Microw. Antennas Propag. 144, 61–66 (1997).
[Crossref]

IEEE Trans. Antennas Propag. (2)

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer, numerical values,” IEEE Trans. Antennas Propag. 23, 723–725 (1975).
[Crossref]

J. Appl. Phys. (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

J. Eur. Opt. Soc, Rapid Publ. (1)

S. Tricarico, F. Bilotti, and L. Vegni, “Scattering cancellation by metamaterial cylindrical multilayers,” J. Eur. Opt. Soc, Rapid Publ. 4, 09021 (2009).
[Crossref]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8, 521–547 (2014).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

G. A. Shah, “Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence,” Mon. Not. R. Astron. Soc. 148, 93–102 (1970).
[Crossref]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Opt. Commun. (2)

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Conditions for achieving invisibility of hyperbolic multilayered nanotubes,” Opt. Commun. 381, 234–239 (2016).
[Crossref]

C. J. Zapata-Rodríguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices,” Opt. Commun. 285, 3358–3362 (2012).
[Crossref]

Photonics (1)

H. Kettunen, H. Wallén, and A. Sihvola, “Tailoring effective media by Mie resonances of radially-anisotropic cylinders,” Photonics 2, 509–526 (2015).
[Crossref]

Phys. Rev. A (2)

H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A 86, 033825 (2012).
[Crossref]

T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Tunable multiple Fano resonances in magnetic single-layered core-shell particles,” Phys. Rev. A 92, 023835 (2015).
[Crossref]

Phys. Rev. B (1)

S. Feng, M. Elson, and P. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005).
[Crossref]

Phys. Rev. E (1)

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (2)

B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009).
[Crossref] [PubMed]

D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves,” Phys. Rev. Lett. 103, 064301 (2009).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6, 46–48 (2012).
[Crossref]

Prog. Quant. Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quant. Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (2)

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: Theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref] [PubMed]

K.-H. Kim, Y.-S. No, S. Chang, J.-H. Choi, and H.-G. Park, “Invisible hyperbolic metamaterial nanotube at visible frequency,” Sci. Rep. 5, 16027 (2015).
[Crossref] [PubMed]

Science (2)

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[Crossref]

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

D. E. Aspnes, “Plasmonics and effective medium theory,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 203–224.
[Crossref]

C. Díaz-Aviñó, M. Naserpour, and C. J. Zapata-Rodríguez, “Tunable scattering cancellation of light using anisotropic cylindrical cavities,” Plasmonics, to be published (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of the coaxial multilayered metamaterial forming the infinitely-long nanotube. (b) Permittivity function of our scatterer with radially periodic variation, ε(r) = ε(r + Λ), and designer marginal layers.
Fig. 2
Fig. 2 Scattering efficiency Qsca of a periodic Ag-TiO2 nanotube immersed in air with inmost radius R1 = 50 nm, thickness T = 60 nm, period Λ = 20 nm, and metal filling fraction f = 0.5, when varying the marginal parameter m. The incident plane wave is: (a)–(b) TM z polarized, and (c)–(d) TE z polarized. In (b) and (d) we compare the scattered wave fields of the nanocavities under optimal marginal configurations here analyzed (top scatterer) with the nanotubes proposed in [13] (bottom scatterer) for different wavelengths.
Fig. 3
Fig. 3 (a) Real part of the average permittivity 〈εz〉 defined in Eq. (14) for an Ag-TiO2 multilayered nanocavity with inmost radius R1 = 50 nm, thickness T = 60 nm, period Λ = 20 nm, and metal filling fraction f = 0.5. The values of the iso-permittivity curves 〈εz〉 = 0 and 〈εz〉 = 1 are represented in (b) together with the minima in scattering efficiency found in Fig. 2(a) for TM z (blue solid line) and Fig. 2(c) for TE z (red solid line).
Fig. 4
Fig. 4 Scattering efficiency of an Ag-TiO2 nanotube with R1 = 50 nm, T = 60 nm, f = 0.5, and varying marginal factor m, considering a period Λ of (a) 5 nm (N = 25 layers), (b) 10 nm (N = 13), (c) 20 nm (N = 7) and (c) 30 nm (N = 5). Profiting from the symmetric response of Qsca on the sign of m, we represent the scattering spectrum for TM z -polarized waves at m > 0 and for TE z -polarized fields at negative marginal factors.
Fig. 5
Fig. 5 Scattering efficiency of an Ag-TiO2 nanotube with R1 = 50 nm, T = 60 nm, Λ = 30 nm, f = 0.5, and varying marginal factor m. The core and environment medium have a permittivity: (a) εC = ε = 1, (b) εC = ε = 2, and (c) εC = ε = 3. The red and blue solid lines indicate the wavelengths at which Qsca reaches a minimum for nanotubes of different m when incident light is TM z and TE z polarized, respectively.
Fig. 6
Fig. 6 Optimal marginal factor m for invisible nanotubes with R1 = 50 nm, T = 60 nm, Λ = 30 nm, and different metal filling fraction f. The blue solid line corresponds to nanotubes oriented along the electric field of the incident plane wave, whereas the red solid line refers to TE z -polarized scattered fields. We also indicate the minimum scattering efficiency Qsca reached for such optimal configuration, expressed in dB, and the wavelength λ for which the latter is achieved.
Fig. 7
Fig. 7 The same as in Fig. 4(d), but the inmost radius R1 takes values: (a) 50 nm, (b) 100 nm, and (c) 200 nm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E i n = z ^ E 0 exp ( i k x ) = z ^ E 0 n = + i n J n ( k r ) exp ( i n ϕ ) ,
E s c a = z ^ E 0 n = + a n i n H n ( 1 ) ( k r ) exp ( i n ϕ ) ,
E q = z ^ E 0 n = + i n [ b n , q J n ( k q r ) + c n , q Y n ( k q r ) ] exp ( i n ϕ ) ,
E C = z ^ E 0 n = + i n d n J n ( k C r ) exp ( i n ϕ ) ,
D n , q ( R q + 1 ) [ b n , q c n , q ] = D n , q + 1 ( R q + 1 ) [ b n , q + 1 c n , q + 1 ] ,
D n , m ( x ) = [ J n ( k m x ) Y n ( k m x ) Z m 1 J n ( k m x ) Z m 1 Y n ( k m x ) ]
D n , N ( R ) [ b n , N c n , N ] = D n , N + 1 ( R ) [ 1 a n i a n ] ,
[ d n 0 ] = M n [ 1 a n i a n ] ,
M n = [ M n , 11 M n , 12 M n , 21 M n , 22 ] = [ D n , C ( R 1 ) ] 1 { q = 1 N D n , q ( R q ) [ D n , q ( R q + 1 ) ] 1 } D n , N + 1 ( R ) .
a n = M n , 21 M n , 21 + i M n , 22 ,
Q s c a = 2 k R n = + | a n | 2 .
ε m ( λ ) = 3.691 9.152 2 ( 1.24 / λ ) 2 + i 0.021 ( 1.24 / λ ) ,
ε d ( λ ) = 5.193 + 0.244 λ 2 0.0803 ,
ε z = ε ( r ) E z ( r , ϕ ) r d r d ϕ E z ( r , ϕ ) r d r d ϕ 2 ( R 2 R 1 2 ) R 1 R ε ( r ) r d r .

Metrics