Abstract

Spectrometers and cameras are used in ultrafast spectroscopy to achieve high resolution in both time and frequency domains. Frequency-resolved signals from the camera pixels cannot be processed by common lock-in amplifiers, which have only a limited number of input channels. Here we demonstrate a rapid and economical method that achieves the function of a lock-in amplifier using mechanical choppers and a programmable microcontroller. We demonstrate the method’s effectiveness by performing a frequency-resolved pump-probe measurement on the dye Nile Blue in solution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy

Florian Kanal, Sabine Keiber, Reiner Eck, and Tobias Brixner
Opt. Express 22(14) 16965-16975 (2014)

High-speed femtosecond pump probe spectroscopy with a smart pixel detector array

S. Bourquin, R. P. Prasankumar, F. X. Kärtner, J. G. Fujimoto, T. Lasser, and R. P. Salathé
Opt. Lett. 28(17) 1588-1590 (2003)

Frequency-resolved pump–probe characterization of femtosecond infrared pulses

Sergey Yeremenko, Andrius Baltuška, F. de Haan, Maxim S. Pshenichnikov, and Douwe A. Wiersma
Opt. Lett. 27(13) 1171-1173 (2002)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
    [Crossref]
  2. R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
    [Crossref]
  3. A. M. Weiner and E. P. Ippen, “Femtosecond excited state relaxation of dye molecules in solution,” Chem. Phys. Lett. 114(5–6), 456–460 (1985).
    [Crossref]
  4. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
    [Crossref] [PubMed]
  5. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
    [Crossref]
  6. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
    [Crossref]
  7. A. M. Weiner, Ultrafast Optics (John Wiley and Sons, Inc., 2009).
  8. R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
    [Crossref]
  9. J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
    [Crossref]
  10. L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
    [Crossref]
  11. L. Guo and X. Xu, “Ultrafast spectroscopy of electron-phonon coupling in gold,” J. Heat Transfer 136(12), 122401 (2014).
    [Crossref]
  12. L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
    [Crossref]
  13. S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
    [Crossref] [PubMed]
  14. W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
    [Crossref]
  15. H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
    [Crossref]
  16. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
    [Crossref] [PubMed]
  17. I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
    [Crossref] [PubMed]
  18. H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
    [Crossref]

2015 (2)

L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
[Crossref]

H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
[Crossref]

2014 (4)

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

L. Guo and X. Xu, “Ultrafast spectroscopy of electron-phonon coupling in gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

2012 (1)

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

2008 (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

2006 (1)

R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
[Crossref]

2003 (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

2000 (1)

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

1997 (1)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

1989 (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

1987 (1)

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

1985 (1)

A. M. Weiner and E. P. Ippen, “Femtosecond excited state relaxation of dye molecules in solution,” Chem. Phys. Lett. 114(5–6), 456–460 (1985).
[Crossref]

Augulis, R.

Becker, P. C.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Bigot, J.-Y.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Braun, P. V.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Cahill, D. G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Camargo, F. V.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Cao, W.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Champion, P. M.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Chen, G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

Clarke, D. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Demidov, A. A.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Fan, S.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Fisher, T. S.

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

Fleming, G. R.

H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
[Crossref]

Ford, W. K.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Fragnito, H. L.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

Ge, S.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Goodson, K. E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Guo, L.

L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
[Crossref]

L. Guo and X. Xu, “Ultrafast spectroscopy of electron-phonon coupling in gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

Heisler, I. A.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Hodson, S. L.

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

Holub, K. W.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

Ippen, E. P.

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

A. M. Weiner and E. P. Ippen, “Femtosecond excited state relaxation of dye molecules in solution,” Chem. Phys. Lett. 114(5–6), 456–460 (1985).
[Crossref]

Keblinski, P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

King, W. P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

Liu, J.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

Liu, X.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Mahan, G. D.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Majudar, A.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Majumdar, A.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Maris, H. J.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Meech, S. R.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Merlin, R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

Moca, R.

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Norris, P. M.

R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
[Crossref]

Phillpot, S. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Pop, E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Qiao, X.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Qiu, J.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Rosca, F.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Salvador, J. R.

L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
[Crossref]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

Shank, C. V.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Sheeran, M.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Shi, L.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Sjodin, T.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Smith, A.

R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
[Crossref]

Stevens, R.

R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
[Crossref]

Sun, D.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Tan, P.-H.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Tang, D.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

Wang, H.

H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
[Crossref]

Wang, Q.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Wang, W.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Weiner, A. M.

A. M. Weiner and E. P. Ippen, “Femtosecond excited state relaxation of dye molecules in solution,” Chem. Phys. Lett. 114(5–6), 456–460 (1985).
[Crossref]

Whittaker-Brooks, L.

H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
[Crossref]

Xu, X.

L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
[Crossref]

L. Guo and X. Xu, “Ultrafast spectroscopy of electron-phonon coupling in gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

Xu, Z.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Yang, R.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

Ye, X.

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

Zhao, J.

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

Zigmantas, D.

Appl. Phys. Lett. (2)

R. W. Schoenlein, W. Z. Lin, E. P. Ippen, and J. G. Fujimoto, “Femtosecond hotcarrier energy relaxation in GaAs,” Appl. Phys. Lett. 51(18), 1442–1444 (1987).
[Crossref]

L. Guo, X. Xu, and J. R. Salvador, “Ultrafast carriers dynamics in filled-skutterudites,” Appl. Phys. Lett. 106(23), 231902 (2015).
[Crossref]

Appl. Phys. Rev. (1)

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Chem. Phys. Lett. (2)

A. M. Weiner and E. P. Ippen, “Femtosecond excited state relaxation of dye molecules in solution,” Chem. Phys. Lett. 114(5–6), 456–460 (1985).
[Crossref]

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (2)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majudar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

J. Zhu, D. Tang, W. Wang, J. Liu, K. W. Holub, and R. Yang, “Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films,” J. Appl. Phys. 108(9), 094315 (2010).
[Crossref]

J. Heat Transfer (2)

L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating,” J. Heat Transfer 134(4), 042402 (2012).
[Crossref]

L. Guo and X. Xu, “Ultrafast spectroscopy of electron-phonon coupling in gold,” J. Heat Transfer 136(12), 122401 (2014).
[Crossref]

J. Phys. Chem. B (1)

W. Wang, X. Ye, A. A. Demidov, F. Rosca, T. Sjodin, W. Cao, M. Sheeran, and P. M. Champion, “Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c,” J. Phys. Chem. B 104(46), 10789–10801 (2000).
[Crossref]

J. Phys. Chem. C (1)

H. Wang, L. Whittaker-Brooks, and G. R. Fleming, “L. W.-Brooks, and G. R. Fleming, “Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases,” J. Phys. Chem. C 119(34), 19590–19595 (2015).
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (2)

R. Stevens, A. Smith, and P. M. Norris, “Signal analysis and characterization of experimental setup for the transient thermoreflectance technique,” Rev. Sci. Instrum. 77(8), 084901 (2006).
[Crossref]

I. A. Heisler, R. Moca, F. V. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Ge, X. Liu, X. Qiao, Q. Wang, Z. Xu, J. Qiu, P.-H. Tan, J. Zhao, and D. Sun, “Coherent longitudinal acoustic phonon approaching THz frequency in multilayer Molybdenum Disulphide,” Sci. Rep. 4, 5722 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

Other (1)

A. M. Weiner, Ultrafast Optics (John Wiley and Sons, Inc., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Device connection and synchronization scheme. SDG: synchronization and delay generator; D0(1): digital input pin with index 0(1); INT: digital input pin for hardware interrupt. The dashed red circles indicate the positions of the feedback optical sensors on the choppers.
Fig. 2
Fig. 2 Influence of beam alignment on the reading of pulse status, blocked or passed. In this example the laser repetition rate is four times the chopping frequency.
Fig. 3
Fig. 3 80 frames of synchronized readouts from the CCD and the microcontroller for one chopped beam. The pulsed laser has a repetition rate of 1 kHz and the chopper is working at 250 Hz. The upper plot shows the frequency-resolved intensity detected by the CCD and the lower shows the corresponding chopper status. The chopper sensor is aligned such that the feedback signal is one when the light is blocked.
Fig. 4
Fig. 4 (a) Absorption spectrum of Nile Blue in ethanol (left axis) used in the test and the laser spectrum (right axis); (b) Autocorrelation trace of the laser pulse and the Gaussian fit, which indicates a pulse duration of 29 fs.
Fig. 5
Fig. 5 (a) Pump-probe measurement results (normalized ΔT) on the solution of Nile Blue dye in ethanol measured by a CCD with the proposed data acquisition method, normalized by the maximum value near 0 ps around 600 nm. (b) Comparison of pump-probe measurement results (normalized ΔT/T) by the two methods: the blue curve indicates the signal measured by a photodiode (PD) with lock-in detection, and is vertically shifted for clarity; the red curve indicates the sum of the frequency-resolved signals from 580 to 620 nm in Fig. 5 (a).

Metrics