Abstract

Small metal structures sustaining plasmon resonances in the optical regime are of great interest due to their large scattering cross sections and ability to concentrate light to subwavelength volumes. In this paper, we study the dipolar plasmon resonances of optical antennas with a constant volume and a sinusoidal modulation in width. We experimentally show that by changing the phase of the width-modulation, with a small 10 nm modulation amplitude, the resonance shifts over 160 nm. Using simulations we show how this simple design can create resonance shifts greater than 600 nm. The versatility of this design is further shown by creating asymmetric structures with two different modulation amplitudes, which we experimentally and numerically show to give rise to two resonances. Our results on both the symmetric and asymmetric antennas show the capability to control the localization of the fields outside the antenna, while still maintaining the freedom to change the antenna resonance wavelength. The antenna design we tested combines a large spectral tunability with a small footprint: all the antenna dimensions are factor 7 to 13 smaller than the wavelength, and hold potential as a design element in meta-surfaces for beam shaping.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wideband optical leaky-wave slot antennas

Yan Wang, Amr S. Helmy, and George V. Eleftheriades
Opt. Express 19(13) 12392-12401 (2011)

Oxide mediated spectral shifting in aluminum resonant optical antennas

Patrick M. Schwab, Carola Moosmann, Katja Dopf, and Hans-Jürgen Eisler
Opt. Express 23(20) 26533-26543 (2015)

Nanoscale modeling of electro-plasmonic tunable devices for modulators and metasurfaces

Christoph A. Riedel, Kai Sun, Otto L. Muskens, and CH de Groot
Opt. Express 25(9) 10031-10043 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nature 5(2), 83–90 (2011).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
    [Crossref]
  3. P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
    [Crossref] [PubMed]
  4. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  5. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
    [Crossref]
  6. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
    [Crossref] [PubMed]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  8. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  9. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  11. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
    [Crossref] [PubMed]
  12. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
    [Crossref]
  13. C. F. Bohren and D. R. Huffman, “Absorption cross-section maxima and minima in IR absorption bands of small ionic ellipsoidal particles,” Appl. Opt. 20(6), 959–962 (1981).
    [Crossref] [PubMed]
  14. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B: Opt. Phys. 26(3), 517 (2009).
    [Crossref]
  15. E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
    [Crossref]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 266802(6), 1–4 (2007).
  17. J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
    [Crossref]
  18. M. Agio and A. Alú, Optical antennas (Cambridge university, 2013).
  19. M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
    [Crossref]
  20. C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).
  21. Calculations where performed using CST microwave studio.
  22. P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 64370–4379 (1972)
    [Crossref]
  23. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004)
    [Crossref] [PubMed]
  24. L. Novotny and B. Hecht, Principles of nano-optics(Cambridge university, 2008)
  25. F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

2013 (1)

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
[Crossref]

2012 (3)

P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
[Crossref]

2011 (3)

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nature 5(2), 83–90 (2011).

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
[Crossref] [PubMed]

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

2009 (3)

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B: Opt. Phys. 26(3), 517 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (1)

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

2007 (2)

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 266802(6), 1–4 (2007).

2006 (1)

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[Crossref]

2004 (1)

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004)
[Crossref] [PubMed]

1981 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 64370–4379 (1972)
[Crossref]

Agio, M.

M. Agio and A. Alú, Optical antennas (Cambridge university, 2013).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alú, A.

M. Agio and A. Alú, Optical antennas (Cambridge university, 2013).

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Atwater, H.A.

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Berkeley, L.

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

Berkovitch, N.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Biagioni, P.

P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
[Crossref] [PubMed]

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Bohren, C. F.

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Bruning, C.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Callegari, V.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 64370–4379 (1972)
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Division, M. S.

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

Dorfmüller, J.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Dregely, D.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Esslinger, M.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feichtner, T.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Forchel, A.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Geisler, P.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giannini, V.

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
[Crossref]

Giessen, H.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Ginzburg, P.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
[Crossref] [PubMed]

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge university, 2008)

Huang, J.

P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
[Crossref] [PubMed]

Huang, J.S.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Huffman, D. R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 64370–4379 (1972)
[Crossref]

Kamp, M.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Kan, C.

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kern, J.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Kern, K.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kuttge, M.

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Lezec, H.J.

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Maier, S. A.

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
[Crossref]

MÃijllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Massa, E.

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
[Crossref]

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Moroz, A.

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B: Opt. Phys. 26(3), 517 (2009).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Nordlander, P.

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004)
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature 5(2), 83–90 (2011).

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 266802(6), 1–4 (2007).

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge university, 2008)

Orenstein, M.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
[Crossref]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Prangsma, J. C.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Prodan, E.

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004)
[Crossref] [PubMed]

Sennhauser, U.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Shen, Y. R.

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature 5(2), 83–90 (2011).

Verhoeven, J.

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Vesseur, E.J.R.

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Vogelgesang, R.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

Wang, G.

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).

Weinmann, P.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Wu, X.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[Crossref]

Zhu, X.

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).

Ziegler, J.

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Kuttge, E.J.R. Vesseur, J. Verhoeven, H.J. Lezec, H.A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

J. Chem. Phys. (1)

E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120, 5444–5454 (2004)
[Crossref] [PubMed]

J. Opt. Soc. Am. B: Opt. Phys. (1)

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B: Opt. Phys. 26(3), 517 (2009).
[Crossref]

J. Phys. Chem. B (1)

C. Kan, X. Zhu, and G. Wang, “Single-crystalline gold microplates: synthesis, characterization, and thermal stability,” J. Phys. Chem. B 10(110), 4651–4656 (2007).

Nano Lett. (2)

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010).
[Crossref] [PubMed]

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Nat Commun (1)

J.S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1150 (2010).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnology (1)

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnology 7, 379–382 (2012).
[Crossref]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. MÃijllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nature 5(2), 83–90 (2011).

New J. Phys. (1)

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).
[Crossref]

Phys. Rev. B (2)

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 64370–4379 (1972)
[Crossref]

Phys. Rev. Lett. (2)

F. Wang, Y. R. Shen, M. S. Division, and L. Berkeley, ”General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 206806, 1–4 (2006)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 266802(6), 1–4 (2007).

Rep. Prog. Phys. (1)

P. Biagioni, J. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012)
[Crossref] [PubMed]

Science (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Other (3)

M. Agio and A. Alú, Optical antennas (Cambridge university, 2013).

Calculations where performed using CST microwave studio.

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge university, 2008)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustrations of the studied structure. (Top left) a graphical depiction of the top view of the investigated structure, with the different geometrical definitions used in this paper. (Top right) the different geometries studied in this paper, which are obtained by changing the phase value of the sinusoidal modulation which describes the width of the antennas. (Below) SEM micrographs of an unmodulated bar and 5 width modulated nanoantennas, having different respective modulation phase values and an amplitude of 10 nm. The scale bar indicates a length of 100 nm.
Fig. 2
Fig. 2 Fabrication of the modulated antennas. (Left) SEM micrograph of a nanostructure, made with a standard patterning scheme and to its right SEM micrographs of substructures (A–C), which are made during a three step FIB patterning, which are shown in (D–F). First a modulated rod of ten periods is made (A,D), after which the majority of the rod is removed, leaving a section of one period (B,E). An extra cleaning step is performed, which removes redeposited material near the structure (C,F). The structure in (B) nicely illustrates the residual material around the antenna after the second patterning step, however we note that a structure with a modulation phase of π instead of 0.5π (as in C) is shown.
Fig. 3
Fig. 3 Dark-field spectroscopy setup. A) schematic of the dark-field spectroscopy setup: a supercontinuum source is coupled into a monochromator after which a beam with a 2 nm spectral bandwidth is focused onto the sample under an angle of approximately 50° with respect with the substrate. A 0.5 NA objective collects the light emitted from the nanostructures, after which it is focused on a cooled electron multiplying (EM) CCD. B) Typical dark-field image collected by the EMCCD camera, which in this case shows the scattering of 9 bar antennas of different lengths which are illuminated at λ = 710 nm.
Fig. 4
Fig. 4 Scattering spectra of width modulated antennas with various modulation phases. (A) experimental data, (B) numerical calculations showing scattering spectra of width modulated antennas having different respective modulation phase shifts and an modulation amplitude of 10 nm. The scattering spectra are normalized to their respective maximum intensity. The maximum scattering intensities of the various antenna shapes have shown to be of approximately equal magnitude. (C–G) numerically calculated absolute electric field distributions of 5 modulated antennas with different modulation phases and a modulation amplitude of 20 nm. The electric field distributions have been normalized to the same value and a ratio of the overall cumulative electric field distribution outside the metal, is shown in the bottom left corner of each respective image.
Fig. 5
Fig. 5 The effect of modulation amplitude and phase on resonance wavelength. Numerical calculations of various width modulated antennas and their respective resonance wavelength. The resonance wavelength of the nine different types of modulated antennas, having different modulation phases, are calculated for various modulation amplitudes.
Fig. 6
Fig. 6 Asymmetric width modulated antennas. (A) experimental and numerical scattering spectra of asymmetric width modulated antennas, having different degrees of asymmetry due to a vertical shift of the center section. The calculations have been done for a starting modulation amplitude of 15 nm. The experimental scattering spectra shows a cutoff at 1000 nm due to low signal-to-noise of the used EMCCD. Micrograph showing a SEM image of the experimented structure, with a white bar indicating 100 nm. (B–C) numerically calculated electric field distributions of an asymmetric width modulated antenna, with a center shift of 20 nm at λres = 690 nm and λres = 980 nm. The electric field distributions are normalized to the maximum value of figure (C).
Fig. 7
Fig. 7 Fredholm integral method. Cartoon depicting the Fredholm integral method applied on two positions on the surface of a concave antenna. The red and blue areas indicate the accumulation and depletion of charge, due to the oscillatory movement of the free electrons.
Fig. 8
Fig. 8 Relation between E-fields and ε of an optical antenna. The ratio of dielectric constants in and outside the antenna, versus the ratio of the electric field in and outside the antenna, for simulated antennas with different modulation phases (0, 1/4, 1/2, 3/4, 1)π and amplitudes (0-30 nm). The dashed line shows a linear fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( Q ) = ε ( ω ) 1 ε ( ω ) + 1 s σ ( M ) r M Q n ^ Q π | r M Q | 2 d S M
Re { ε m ( ω ) } / ε d = Ω d E 2 ¯ d V / Ω m E 2 ¯ d V

Metrics