Abstract

Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas

Hongwei Jia, Fan Yang, Ying Zhong, and Haitao Liu
Photon. Res. 4(6) 293-305 (2016)

Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves

Kosei Ueno, Sho Nozawa, and Hiroaki Misawa
Opt. Express 23(22) 28584-28592 (2015)

Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region

Zhengqing Qi, Jie Yao, Liangliang Zhao, Yiping Cui, and Changgui Lu
Photon. Res. 3(6) 313-316 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
    [Crossref]
  4. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
    [Crossref] [PubMed]
  5. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  6. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
    [Crossref] [PubMed]
  7. A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
    [Crossref] [PubMed]
  8. A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5, 12570 (2015).
    [Crossref] [PubMed]
  9. K. Ueno, S. Nozawa, and H. Misawa, “Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves,” Opt. Express 23(22), 28584–28592 (2015).
    [Crossref] [PubMed]
  10. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  12. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
    [Crossref]
  13. F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
    [Crossref] [PubMed]
  14. L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
    [PubMed]
  15. K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express 15(25), 16527–16539 (2007).
    [Crossref] [PubMed]
  16. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
    [Crossref] [PubMed]
  17. K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
    [Crossref] [PubMed]
  18. X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
    [Crossref]
  19. A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
    [Crossref] [PubMed]
  20. K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22(10), 12189–12199 (2014).
    [Crossref] [PubMed]

2015 (6)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5, 12570 (2015).
[Crossref] [PubMed]

K. Ueno, S. Nozawa, and H. Misawa, “Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves,” Opt. Express 23(22), 28584–28592 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

2012 (2)

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express 15(25), 16527–16539 (2007).
[Crossref] [PubMed]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

1997 (1)

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Berini, P.

Cambril, E.

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Chang, S.-S.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Chirumamilla, M.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Clerici, M.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Das, G.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

De Angelis, F.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

De Donato, F.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Di Fabrizio, E.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Di Pietro, P.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Genet, C.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

George, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Gogol, P.

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

Gottheim, S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Halas, N. J.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Hourahine, B.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Hutchison, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Imura, K.

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5, 12570 (2015).
[Crossref] [PubMed]

Juodkazis, S.

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kim, F.

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

King, N. S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Kleine-Ostmann, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Koch, M.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Kurner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Lee, C.-L.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Lesina, A. C.

Liberale, C.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Lupi, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Manna, L.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Marras, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

McArthur, D.

Misawa, H.

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Mizeikis, V.

Morandotti, R.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Nordlander, P.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Nozawa, S.

Ohnishi, D.

Okamoto, H.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Palpant, B.

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

Papoff, F.

Peccianti, M.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Perucchi, A.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Prato, M.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Proietti Zaccaria, R.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Pupillo, G.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Ramunno, L.

Razzari, L.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Sasaki, K.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schoebei, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Shalabney, A.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Shalaby, M.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Song, J. H.

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Tanaka, T.

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5, 12570 (2015).
[Crossref] [PubMed]

Toma, A.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tuccio, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Ueno, K.

Vaccari, A.

Wang, C. R. C.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Wang, X.

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

Wang, Y.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Wen, F.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Yang, P.

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Y.-Y.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Zaccaria, R. P.

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Zhang, Y.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

ACS Nano (1)

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9(6), 6428–6435 (2015).
[Crossref] [PubMed]

IEEE Antennas Propagation (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation 49(6), 24–39 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

F. Kim, J. H. Song, and P. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124(48), 14316–14317 (2002).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

J. Phys. Chem. C (1)

X. Wang, P. Gogol, E. Cambril, and B. Palpant, “Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays,” J. Phys. Chem. C 116(46), 24741–24747 (2012).
[Crossref]

J. Semicond. Tech. Sci. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” J. Semicond. Tech. Sci. 20(7), S266–S280 (2005).
[Crossref]

Nano Lett. (3)

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. Proietti Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2015).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6, 5981 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (4)

Phys. Chem. Chem. Phys. (1)

K. Ueno and H. Misawa, “Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles,” Phys. Chem. Chem. Phys. 15(12), 4093–4099 (2013).
[Crossref] [PubMed]

Plasmonics (1)

L. Razzari, A. Toma, M. Clerici, M. Shalaby, G. Das, C. Liberale, M. Chirumamilla, R. P. Zaccaria, F. De Angelis, M. Peccianti, R. Morandotti, and E. Di Fabrizio, “Terahertz dipole nanoantenna arrays: resonance characteristics,” Plasmonics 8(1), 133–138 (2013).
[PubMed]

Sci. Rep. (1)

A. Ishikawa and T. Tanaka, “Metamaterial absorbers for infrared detection of molecular self-assembled monolayers,” Sci. Rep. 5, 12570 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic illustration of the designed gold nanochains composed of nanostructures; the top view of the square, triangular, rhomboid, and disk shapes are shown. Inset dimensions show the side length or diameter of the circle, the total length, and the bottleneck width. SEM images of gold nanochains consisting of five squares (b), circles (c), triangles (d), and rhombuses (e). The thickness of the gold nanochains was set at 30 nm.
Fig. 2
Fig. 2 Extinction spectra of gold nanochains consisting of square (a) and circular nanostructures (b) with a different chain length; 270 nm red line, 398 nm blue line, 527 nm pink line, 655 nm green line, 783 nm brown line, and 912 nm navy line. The black line is extinction spectrum of one square (a) and circular (b) nanostructures, respectively. (c) Chain length dependence of the L-mode peak wavelength with gold nanochains consisting of square, circular, triangular, and rhomboid nanostructures. (d) The quality factor as a function of the chain length of gold nanochains consisting of square, circular, triangular, and rhomboid nanostructures.
Fig. 3
Fig. 3 The experimental and the simulated extinction spectra of gold nanochains containing five square (a) and circular (b) nanostructures with a chain length of 655 nm. The inset figures show a near-field intensity distribution of each peak. The experimental extinction spectra were taken from Figs. 2(a) and 2(b).
Fig. 4
Fig. 4 (a) An ordered array of gold nanochains with square nanostructures; a/b is defined as the structural periodicity relative to the chain length, and θ is defined as a rotating angle relative to the transverse axis. SEM images of gold nanochains containing ten and thirty square nanostructures (a/b = 2) with θ of 0 (b) and 60° (c), respectively. (d) Extinction spectra of gold nanochains composed of ten square nanostructures with various structural periodicity ratios (a/b: 1.25, 1.5, 1.75, 2, and 2.25); θ was set at 0. (e) FDTD extinction spectra of gold nanochains with ten square nanoblocks (a/b: 1.5 and 2.25).
Fig. 5
Fig. 5 (a) Plots of the extinction value at the peak wavenumber of the dipole resonance band as a function of a/b and θ; (b) Peak ratio between dipole and hexapole modes as a function of a/b.
Fig. 6
Fig. 6 (a) Extinction spectra of gold nanochains with thirty square nanostructures (black line) compared to the substrate (red line). (b) Chain length dependence of the resonant wavelength. Inset shows extinction spectra for different lengths of gold nanochain composed of square nanoblocks; two blocks red line, three blocks blue line, four blocks pink line, five blocks green line, seven blocks dark brown line, ten blocks navy line, and fourteen blocks orange line.
Fig. 7
Fig. 7 (a) SEM images of god nanochains consisting of eighteen, thirty-six, and sixty circular nanostructures arranged in a circle. (b) Extinction spectra of the ring-type gold nanochains composed of circular nanostructures with different ring diameters: 0.51 μm red line, 0.61 μm blue line, 0.80 μm pink line, 0.96 μm green line, 1.35 μm dark brown line, 1.69 μm navy line, and 2.05 μm orange line. (c) Peak wavelength vs. ring diameter.
Fig. 8
Fig. 8 (a) FDTD extinction spectra of ring-type and straight gold nanochains with a diameter of 1.35 μm (dark brown line) and chain length (navy line) of 1.35 μm, respectively. (b) The resonant wavenumber dependence of the spectral width as FWHM with ring-type (red) and straight (black) gold nanochains, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Extinction=logT

Metrics