Abstract

Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes

Hee-Dong Kim, Kyeong Heon Kim, Su Jin Kim, and Tae Geun Kim
Opt. Express 23(22) 28775-28783 (2015)

GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer

Wei-Chih Lai, Chih-Nan Lin, Yi-Chun Lai, Peichen Yu, Gou Chung Chi, and Shoou-Jinn Chang
Opt. Express 22(S2) A396-A401 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Min, M. Son, S.-Y. Bae, J.-Y. Lee, J. Yun, M.-J. Maeng, D.-G. Kwon, Y. Park, J.-I. Shim, M.-H. Ham, and D.-S. Lee, “Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes,” Opt. Express 22(S4Suppl 4), A1040–A1050 (2014).
    [Crossref] [PubMed]
  2. H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
    [Crossref]
  3. M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4(1), 131–134 (2011).
    [Crossref]
  4. Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
    [Crossref]
  5. J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
    [Crossref] [PubMed]
  6. Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
    [Crossref]
  7. C. Hilsum, “Flat-panel electronic displays: a triumph of physics, chemistry and engineering,” Philos. Trans. R. Soc. A 368(1914), 1027–1082 (2010).
    [Crossref] [PubMed]
  8. B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
    [Crossref]
  9. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
    [Crossref]
  10. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
    [Crossref] [PubMed]
  11. D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
    [Crossref] [PubMed]
  12. Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
    [Crossref]
  13. T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
    [Crossref]
  14. C. Baratto, R. Kumar, E. Comini, G. Faglia, and G. Sberveglieri, “Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode,” Opt. Express 23(15), 18937–18942 (2015).
    [Crossref] [PubMed]
  15. S. J. Kim, K. H. Kim, and T. G. Kim, “Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks,” Opt. Express 21(7), 8062–8068 (2013).
    [Crossref] [PubMed]
  16. B.-J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Opt. Express 18(22), 23030–23034 (2010).
    [Crossref] [PubMed]
  17. Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
    [Crossref] [PubMed]
  18. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  19. D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
    [Crossref]
  20. H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
    [Crossref]
  21. H.-D. Kim, K. H. Kim, S. J. Kim, and T. G. Kim, “Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes,” Opt. Express 23(22), 28775–28783 (2015).
    [Crossref] [PubMed]
  22. S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
    [PubMed]
  23. J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
    [Crossref] [PubMed]
  24. M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
    [Crossref] [PubMed]
  25. C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
    [Crossref]
  26. B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
    [Crossref] [PubMed]
  27. H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
    [Crossref]
  28. Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
    [Crossref]
  29. H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
    [Crossref]
  30. C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
    [PubMed]
  31. M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
    [Crossref]
  32. A. Klein, “Interface properties of dielectric oxides,” J. Am. Ceram. Soc. 99(2), 369–387 (2016).
    [Crossref]
  33. M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
    [Crossref] [PubMed]
  34. S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
    [Crossref]
  35. S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
    [Crossref]
  36. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
    [Crossref] [PubMed]
  37. T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

2016 (1)

A. Klein, “Interface properties of dielectric oxides,” J. Am. Ceram. Soc. 99(2), 369–387 (2016).
[Crossref]

2015 (2)

2014 (4)

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

J.-H. Min, M. Son, S.-Y. Bae, J.-Y. Lee, J. Yun, M.-J. Maeng, D.-G. Kwon, Y. Park, J.-I. Shim, M.-H. Ham, and D.-S. Lee, “Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes,” Opt. Express 22(S4Suppl 4), A1040–A1050 (2014).
[Crossref] [PubMed]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

2013 (7)

M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
[Crossref]

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
[Crossref] [PubMed]

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

S. J. Kim, K. H. Kim, and T. G. Kim, “Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks,” Opt. Express 21(7), 8062–8068 (2013).
[Crossref] [PubMed]

Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
[Crossref]

2012 (4)

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

2011 (4)

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4(1), 131–134 (2011).
[Crossref]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

2010 (7)

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
[Crossref]

C. Hilsum, “Flat-panel electronic displays: a triumph of physics, chemistry and engineering,” Philos. Trans. R. Soc. A 368(1914), 1027–1082 (2010).
[Crossref] [PubMed]

B.-J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Opt. Express 18(22), 23030–23034 (2010).
[Crossref] [PubMed]

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

2009 (5)

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

2008 (2)

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Ahn, S.-E.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

An, H.-M.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

An, K. H.

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Aono, K.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Bae, S.-Y.

Baratto, C.

Brugger, J.

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

Chang, C.-W.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Chang, J. Y.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Chen, C.-L.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Chen, J. C.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Chen, L. Y.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Chen, T. L.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
[Crossref]

Chen, X.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Chen, Y.-F.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Cheylan, S.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

Chiang, P.-F.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Cho, C.-K.

Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
[Crossref]

Cho, J.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Choi, M.

M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
[Crossref]

Chu, M.-T.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Comini, E.

Dai, L.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Dai, Y.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Eddy, C. R.

Faglia, G.

Fan, Z.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Gather, M. C.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Ghosh, D. S.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
[Crossref]

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

Giurgola, S.

Greiner, M. T.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Ham, M.-H.

Han, I. K.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

Han, S.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Haughn, C.

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Helander, M. G.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Hilsum, C.

C. Hilsum, “Flat-panel electronic displays: a triumph of physics, chemistry and engineering,” Philos. Trans. R. Soc. A 368(1914), 1027–1082 (2010).
[Crossref] [PubMed]

Hite, J.

Hong, S. M.

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Huang, S. B.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Hwang, C. S.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Hwu, F. S.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Ikeda, Y.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Ito, S.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Jang, J. H.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Janotti, A.

M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
[Crossref]

Jeon, J. M.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Jeon, S. H.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Kang, B. S.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Karthäuser, S.

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Katayama, K.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Kato, Y.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Kawai, K.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Kawashima, Y.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Kim, B.-J.

Kim, C. J.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Kim, C. S.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Kim, G. H.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Kim, H.-D.

H.-D. Kim, K. H. Kim, S. J. Kim, and T. G. Kim, “Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes,” Opt. Express 23(22), 28775–28783 (2015).
[Crossref] [PubMed]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

Kim, H.-K.

Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
[Crossref]

Kim, J.

Kim, K. H.

H.-D. Kim, K. H. Kim, S. J. Kim, and T. G. Kim, “Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes,” Opt. Express 23(22), 28775–28783 (2015).
[Crossref] [PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

S. J. Kim, K. H. Kim, and T. G. Kim, “Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks,” Opt. Express 21(7), 8062–8068 (2013).
[Crossref] [PubMed]

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Kim, K. M.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Kim, M.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Kim, S. J.

H.-D. Kim, K. H. Kim, S. J. Kim, and T. G. Kim, “Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes,” Opt. Express 23(22), 28775–28783 (2015).
[Crossref] [PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

S. J. Kim, K. H. Kim, and T. G. Kim, “Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks,” Opt. Express 21(7), 8062–8068 (2013).
[Crossref] [PubMed]

Kim, T. G.

H.-D. Kim, K. H. Kim, S. J. Kim, and T. G. Kim, “Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes,” Opt. Express 23(22), 28775–28783 (2015).
[Crossref] [PubMed]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

S. J. Kim, K. H. Kim, and T. G. Kim, “Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks,” Opt. Express 21(7), 8062–8068 (2013).
[Crossref] [PubMed]

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

Klein, A.

A. Klein, “Interface properties of dielectric oxides,” J. Am. Ceram. Soc. 99(2), 369–387 (2016).
[Crossref]

Krautz, D.

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

Kumar, R.

Kuo, S. Y.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Kwon, D. H.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Kwon, D.-G.

Lee, A.-T.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Lee, B.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Lee, C. B.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Lee, C. C.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Lee, D.-S.

Lee, E. B.

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

Lee, J.-H.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Lee, J.-Y.

Lee, M. H.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Lee, M. J.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Leo, K.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Li, L.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Li, X.-S.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Li, Z.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Lin, F. L.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Lin, J.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Lin, P.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Liu, B.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Liu, W. C.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Liu, X.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Liu, Y. J.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Loh, K. P.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Lu, M.-L.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Lu, Z.-H.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Luo, J. X.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Maeng, M.-J.

Martinez, L.

Mastro, M. A.

McGehee, M. D.

M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4(1), 131–134 (2011).
[Crossref]

Mehta, B. R.

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

Meng, H.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Mikawa, T.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Min, J.-H.

Müller-Meskamp, L.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Muraoka, S.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Natelson, D.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Ninomiya, T.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Niu, Q. L.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

O’Connor, B.

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Ouyang, J.

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Pan, T.-C.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Park, B. H.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Park, G.-S.

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

Park, J.-B.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Park, Y.

J.-H. Min, M. Son, S.-Y. Bae, J.-Y. Lee, J. Yun, M.-J. Maeng, D.-G. Kwon, Y. Park, J.-I. Shim, M.-H. Ham, and D.-S. Lee, “Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes,” Opt. Express 22(S4Suppl 4), A1040–A1050 (2014).
[Crossref] [PubMed]

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Pipe, K. P.

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Pruneri, V.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
[Crossref]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

Qin, G. G.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Qiu, J.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Rowell, M. W.

M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4(1), 131–134 (2011).
[Crossref]

Ruan, G.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Savu, A. V.

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

Sberveglieri, G.

Schindler, C.

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Schubert, E. F.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Schubert, S.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Schwab, T.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Seo, D. H.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Seok, J. Y.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

Sheu, G. J.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Shi, Z.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Shim, J.-I.

Shimakawa, K.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Shin, H. W.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

Shin, Y. C.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

Shin, Y.-H.

Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
[Crossref]

Shtein, M.

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Singh, B.

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

Son, M.

Song, S. J.

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

Stewart, D. R.

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
[Crossref] [PubMed]

Strukov, D. B.

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
[Crossref] [PubMed]

Sun, K.

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Szot, K.

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Takagi, T.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Tan, W.-C.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Tang, W.-M.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Tour, J. M.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Tsai, T. H.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Tsai, T. Y.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Tu, S. H.

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Van de Walle, C. G.

M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
[Crossref]

Varandani, D.

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

Vergani, P.

Wang, C.-P.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Wang, H.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Wang, J.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Wang, W.

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Wang, Y.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Wang, Z.-B.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Waser, R.

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Wei, Z.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Xia, Y.

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

Yan, Z.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Yang, J. J.

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
[Crossref] [PubMed]

Yang, S.

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Yang, S.-C.

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Yang, Y.-J.

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

Yao, J.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Yasuhara, R.

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Yen, C. H.

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

Yoo, I.-K.

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Yun, J.

Zhong, L.

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Zhong, Y.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Zhu, F.

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Adv. Funct. Mater. (2)

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

H. Meng, J. X. Luo, W. Wang, Z. Shi, Q. L. Niu, L. Dai, and G. G. Qin, “Top-emission organic light-emitting diode with novel copper/graphene composite anode,” Adv. Funct. Mater. 23(26), 3324–3328 (2013).
[Crossref]

Adv. Mater. (2)

Y. Xia, K. Sun, and J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1(12), 921–925 (2013).
[Crossref]

Appl. Phys. Lett. (3)

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 98(4), 041109 (2010).
[Crossref]

B. O’Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[Crossref]

Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95(6), 063302 (2009).
[Crossref]

Electrochim. Acta (1)

Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, “A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor,” Electrochim. Acta 109, 602–608 (2013).
[Crossref]

Energy Environ. Sci. (1)

M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci. 4(1), 131–134 (2011).
[Crossref]

IEEE Electron Device Lett. (1)

Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett. 30(11), 1149–1151 (2009).
[Crossref]

IEEE Trans. Electron Dev. (1)

H.-D. Kim, H.-M. An, E. B. Lee, and T. G. Kim, “Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices,” IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Klein, “Interface properties of dielectric oxides,” J. Am. Ceram. Soc. 99(2), 369–387 (2016).
[Crossref]

J. Appl. Phys. (1)

M. Choi, A. Janotti, and C. G. Van de Walle, “Native point defects and dangling bonds in α-Al2O3,” J. Appl. Phys. 113(4), 044501 (2013).
[Crossref]

Microelectron. Reliab. (1)

S.-C. Yang, P. Lin, C.-P. Wang, S. B. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50(7), 959–964 (2010).
[Crossref]

Nano Lett. (1)

M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory,” Nano Lett. 9(4), 1476–1481 (2009).
[Crossref] [PubMed]

Nanotechnology (2)

B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology 23(49), 495707 (2012).
[Crossref] [PubMed]

D. Krautz, S. Cheylan, D. S. Ghosh, and V. Pruneri, “Nickel as an alternative semitransparent anode to indium tin oxide for polymer LED applications,” Nanotechnology 20(27), 275204 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene,” Nat. Commun. 3(1101), 1101 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol. 5(2), 148–153 (2010).
[Crossref] [PubMed]

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nat. Nanotechnol. 8(1), 13–24 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Philos. Trans. R. Soc. A (1)

C. Hilsum, “Flat-panel electronic displays: a triumph of physics, chemistry and engineering,” Philos. Trans. R. Soc. A 368(1914), 1027–1082 (2010).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (2)

C. Schindler, K. Szot, S. Karthäuser, and R. Waser, “Controlled local filament growth and dissolution in Ag–Ge–Se,” Phys. Status Solidi Rapid Res. Lett. 2(3), 129–131 (2008).
[Crossref]

Y. C. Shin, M. H. Lee, K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Bias polarity dependent local electrical conduction in resistive switching TiO2 thin films,” Phys. Status Solidi Rapid Res. Lett. 4(5–6), 112–114 (2010).
[Crossref]

Sci. Rep. (2)

C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, “Electrically and optically readable light emitting memories,” Sci. Rep. 4(5121), 5121 (2014).
[PubMed]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4(5827), 5827 (2014).
[PubMed]

Semicond. Sci. Technol. (1)

H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, “Unipolar resistive switching phenomena in fully transparent SiN-based memory cells,” Semicond. Sci. Technol. 27(12), 125020 (2012).
[Crossref]

Solid-State Electron. (1)

S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED,” Solid-State Electron. 54(11), 1438–1443 (2010).
[Crossref]

Thin Solid Films (1)

Y.-H. Shin, C.-K. Cho, and H.-K. Kim, “Resistance and transparency tunable Ag-inserted transparent InZnO films for capacitive touch screen panels,” Thin Solid Films 548, 641–645 (2013).
[Crossref]

Other (1)

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium on VLSI Technology, Digest of Technical Papers (IEEE, 2012), pp. 73–74.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration and electrical conduction mechanism of the GaN-based VLED with CF-based SiNx TCEs. (a) Schematic view of the GaN-based VLED with CF-based SiNx TCEs after EBD; a magnified figure shows that the CFs consist of chains of nitrogen vacancies within the crystal structures of SiNx. (b) I–V characteristic curves measured for the 20-nm-thick SiNx TCE/n-GaN before and after EBD. (c) Current levels of LRS at 1 V as a function of retention time, indicting long-term stability. Inset of (c) shows the current levels within 1 V measured for the 20-nm-thick SiNx TCE/n-GaN before and after EBD. (d) CAFM images of the SiNx TCEs before (left panel) and after (right panel) EBD measured at a reading voltage of 1 V and 5 μm × 5 μm contact area.
Fig. 2
Fig. 2 Electrical and optical properties of the proposed CF-based SiNx TCEs and conventional metal contacts on n-GaN layers. (a) I–V characteristic curves for different pad gap spacings measured for Cr/Al/Ni/Au metal contacts on n-GaN layers (TLM patterns with pad gap spacings of 5, 10, 15, 20, and 25 μm). (b) I–V characteristic curves for different pad gap spacings measured for the 20-nm-thick SiNx TCEs after EBD. The inset shows the I–V characteristic curves measured for the 20-nm-thick SiNx TCEs before EBD. (c) Total resistance for different pad gap spacings of 5, 10, 15, 20, and 25 μm measured for the Cr/Al/Ni/Au metal contacts (upper panel) and CF-based SiNx TCEs on n-GaN layers (lower panel). (d) Optical transmission spectra of the CF-based SiNx TCEs on quartz substrates in the wavelength range of 280–700 nm. The inset shows a photograph of the sample placed on a background logo of Korea University. The upper figure of the inset shows the sample structure of the photograph.
Fig. 3
Fig. 3 Device configuration and electrical performance of the VLEDs with the CF-based SiNx TCEs and conventional metal contacts. (a) Schematic configuration of the VLEDs with the CF-based SiNx TCEs for three different CF densities. (b) Current–forward voltage characteristics of the four types of VLEDs. (c) Reverse leakage current characteristics measured for the four types of VLEDs.
Fig. 4
Fig. 4 Optical performance of the VLEDs with the CF-based SiNx TCEs and conventional metal contacts. (a) Light output power–current characteristic curves of the VLEDs for different CF densities. (b) Electroluminescence spectra of the VLEDs for different CF densities at 350 mA
Fig. 5
Fig. 5 Light emission images of the VLEDs for different CF densities. Comparison of the light intensity distribution of the four VLEDs at 50, 200, and 350 mA. The linear color scale for intensity distribution is given on the right-hand side.
Fig. 6
Fig. 6 (a) Photograph of the cleaved wafer-level VLEDs and the magnified optical microscope image of the fabricated VLED chip with the CF-based SiNx TCEs. (b) Photograph of light emission from the cleaved wafer-level VLEDs with the CF-based SiNx TCEs.

Metrics