Abstract

Plasmonically enhanced absorbing structures have been emerging as strong candidates for photovoltaic (PV) devices. We investigate metal-insulator-metal (MIM) structures that are suitable for tuning spectral absorption properties by modifying layer thicknesses. We have utilized gold and silver nanoparticles to form the top metal (M) region, obtained by dewetting process compatible with large area processes. For the middle (I) and bottom (M) layers, different dielectric materials and metals are investigated. Optimum MIM designs are discussed. We experimentally demonstrate less than 10 percent reflection for most of the visible (VIS) and near infrared (NIR) spectrum. In such stacks, computational analysis shows that the bottom metal is responsible for large portion of absorption with a peak of 80 percent at 1000 nm wavelength for chromium case.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber

Aliaksandr Hubarevich, Aliaksandr Kukhta, Hilmi Volkan Demir, Xiaowei Sun, and Hong Wang
Opt. Express 23(8) 9753-9761 (2015)

Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range

Kentaro Takatori, Takayuki Okamoto, and Koji Ishibashi
Opt. Express 26(2) 1342-1350 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  2. W. Kim, B. S. Simpkins, J. P. Long, B. Zhang, J. Hendrickson, and J. Guo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32(8), 1686–1692 (2015).
    [Crossref]
  3. K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
    [Crossref]
  4. Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
    [Crossref]
  5. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [Crossref]
  6. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  7. R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
    [Crossref]
  8. M. C. Günendi, İ. Tanyeli, G. B. Akgüç, A. Bek, R. Turan, and O. Gülseren, “Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications,” Opt. Express 21(15), 18344–18353 (2013).
    [Crossref] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  10. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref] [PubMed]
  11. F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
    [Crossref] [PubMed]
  12. L. Legert and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55(4), 431–486 (1992).
    [Crossref]
  13. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2015 (3)

W. Kim, B. S. Simpkins, J. P. Long, B. Zhang, J. Hendrickson, and J. Guo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32(8), 1686–1692 (2015).
[Crossref]

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

2014 (2)

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (3)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

2007 (1)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

1992 (1)

L. Legert and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55(4), 431–486 (1992).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abak, K.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Afonso, C. N.

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

Akgüç, G. B.

Alnuaimi, A.

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aygun, L. E.

Battal, E.

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
[Crossref] [PubMed]

Bayindir, M.

Bek, A.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

M. C. Günendi, İ. Tanyeli, G. B. Akgüç, A. Bek, R. Turan, and O. Gülseren, “Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications,” Opt. Express 21(15), 18344–18353 (2013).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Canli, S.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Daglar, B.

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Gülseren, O.

Günendi, M. C.

Günöven, M.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Guo, J.

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hendrickson, J.

Islam, K.

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

Joanny, J. F.

L. Legert and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55(4), 431–486 (1992).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kim, W.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kuhn, T.

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

Legert, L.

L. Legert and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55(4), 431–486 (1992).
[Crossref]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

Long, J. P.

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nasser, H.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Nayfeh, A.

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plasmonically enhanced hot electron based photovoltaic device,” Opt. Express 21(6), 7196–7201 (2013).
[Crossref] [PubMed]

Özkol, E.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Peláez, R. J.

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

Rodríguez, C. E.

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

Saleh, Z. M.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

Simpkins, B. S.

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Tanyeli, I.

Turan, R.

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

M. C. Günendi, İ. Tanyeli, G. B. Akgüç, A. Bek, R. Turan, and O. Gülseren, “Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications,” Opt. Express 21(15), 18344–18353 (2013).
[Crossref] [PubMed]

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

Zhang, B.

Appl. Phys. Lett. (1)

R. J. Peláez, T. Kuhn, C. E. Rodríguez, and C. N. Afonso, “Dynamics of laser induced metal nanoparticle and pattern formation,” Appl. Phys. Lett. 106(6), 061914 (2015).
[Crossref]

J. Appl. Phys. (1)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

J. Nanopart. Res. (1)

Z. M. Saleh, H. Nasser, E. Özkol, M. Günöven, K. Abak, S. Canli, A. Bek, and R. Turan, “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,” J. Nanopart. Res. 17(10), 419 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Rep. Prog. Phys. (1)

L. Legert and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55(4), 431–486 (1992).
[Crossref]

Sci. Rep. (1)

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sol. Energy (1)

K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, “Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells,” Sol. Energy 103, 263–268 (2014).
[Crossref]

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 SEM image of (a-c) gold nanoparticles after applying 600◦C heat for 20min with heating rate of 120 ◦C/min and cooling rate of 120 ◦C/min, heating rate of 120 ◦C/min and cooling rate of 600◦C/min and heating rate of 600 ◦C/min and cooling rate of 600◦C/min respectively, (d-f) silver nanoparticles after applying 500◦C heat for 20min with heating rate of 100 ◦C/min and cooling rate of 100 ◦C/min,, heating rate of 100 ◦C/min and cooling rate of 500◦C/min and heating rate of 500 ◦C/min and cooling rate of 500◦C/min respectively.
Fig. 2
Fig. 2 (a) Schematic of the MIM structure, (b) Normal reflection measurement setup.
Fig. 3
Fig. 3 Measured reflection for MIM stacks from bottom to top: 70nm different metals-40nm aluminum oxide- (a) silver nanoparticles and (b) gold nanoparticles.
Fig. 4
Fig. 4 Sample photos of MIM stacks from top to bottom comprised of silver nanoparticles-40nm aluminum oxide-70nm (a) chromium, (b)aluminum, (c)gold and (d) silver.
Fig. 5
Fig. 5 Measured reflection for MIM stacks with silver nanoparticles on top and 70 nm aluminum as bottom metal and 40 nm of different dielectrics in between.
Fig. 6
Fig. 6 Experimental and simulation results of reflection and absorption (left) and absorption in different layers (right) for silver nanoparticles-aluminum oxide- (a), (b) chromium, (c), (d) aluminum, (e), (f) gold and (g), (h) silver bottom metal. Inset of Fig. 6(a) represents the simulation region in lumerical FDTD and the inset of Fig. 6(b) shows the absorption in chromium up to 1600nm.
Fig. 7
Fig. 7 Electric field and magnetic field magnitude simulation for silver nanoparticles-aluminum oxide-chromium structure at (a), (b) 400nm and (c), (d) 1000nm.
Fig. 8
Fig. 8 Electric field and magnetic field magnitude simulation for silver nanoparticles-aluminum oxide-gold structure at (a), (b) 400nm and (c), (d) 1000nm.
Fig. 9
Fig. 9 Loss tangent magnitude versus wavelength for (a) chromium and (b) aluminum, gold and silver.
Fig. 10
Fig. 10 Experimental and simulation results (left) and absorption in different layers (right) for gold nanoparticles-aluminum oxide- (a), (b) chromium, (c), (d) aluminum, (e), (f) gold and (g), (h) silver bottom metal.

Metrics