Abstract

When a marine target is detected by a mid-infrared detector on a sunny day, the target’s information could be lost if it is located in sun glint. Therefore, we developed a new mid-infrared imaging system capable of effectively detecting marine targets in regions of strong sun glint, which is presented in this report. Firstly, the theory of the analysis methods employed in different detection scenarios is briefly described to establish whether one or two polarizers should be utilized to suppress further the p-polarized component of sun glint. Secondly, for the case in which a second polarizer is employed, the formula for the optimum angle between the two polarizers is given. Then, the results of our field experiment are presented, demonstrating that the developed system can significantly reduce sun glint and can enhance the contrast of target images. A commonly used image processing algorithm proved capable of identifying a target in sun glint, confirming the effectiveness of our proposed mid-infrared polarization imaging system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparing analysis of multispectral and polarimetric imaging for mid-infrared detection blindness condition

Huijie Zhao, Yansong Li, Guorui Jia, Na Li, Zheng Ji, and Jianrong Gu
Appl. Opt. 57(24) 6840-6850 (2018)

Sun glint estimation in marine satellite images: a comparison of results from calculation and radiative transfer modeling

Susan Kay, John Hedley, and Samantha Lavender
Appl. Opt. 52(23) 5631-5639 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Sidran, “Broadband reflectance and emissivity of specular and rough water surfaces,” Appl. Opt. 20(18), 3176–3183 (1981).
    [Crossref] [PubMed]
  2. A. E. Elsner, A. Weber, M. C. Cheney, D. A. VanNasdale, and M. Miura, “Imaging polarimetry in patients with neovascular age-related macular degeneration,” J. Opt. Soc. Am. A 24(5), 1468–1480 (2007).
    [Crossref] [PubMed]
  3. A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
    [Crossref]
  4. L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
    [Crossref]
  5. R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
    [Crossref]
  6. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38(15), 3157–3165 (1999).
    [Crossref] [PubMed]
  7. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
    [Crossref]
  8. A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
    [Crossref]
  9. J. A. Goodman, Z. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47(28), F1–F11 (2008).
    [Crossref] [PubMed]
  10. E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
    [Crossref]
  11. F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
    [Crossref]
  12. J. J. Beard, Reduction of solar glints from the sea with a linear polarizer. No. ERIM-120500–9-T. Environmental Research Inst Of Michiganann Arbor, 1976. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA036152
  13. A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
    [Crossref]
  14. D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
    [Crossref]
  15. B. Fougnie, R. Frouin, P. Lecomte, and P. Y. Deschamps, “Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance,” Appl. Opt. 38(18), 3844–3856 (1999).
    [Crossref] [PubMed]
  16. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [Crossref] [PubMed]
  17. C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
    [Crossref]
  18. S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
    [Crossref]
  19. J. Shaw and C. Marston, “Polarized infrared emissivity for a rough water surface,” Opt. Express 7(11), 375–380 (2000).
    [Crossref] [PubMed]
  20. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  21. F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
    [Crossref]
  22. G. Forssell and T. Hallberg, “Calibrated sensitive polarization measurements methods in the regions 3-5 µm and 8-12 µm, corrected for contributions to the detector signal from the polarizer,” Proc. SPIE 4481, 257–269 (2002).
    [Crossref]

2010 (1)

S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
[Crossref]

2009 (1)

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

2008 (1)

2007 (1)

2004 (1)

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

2003 (1)

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
[Crossref]

2002 (3)

C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
[Crossref]

F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
[Crossref]

G. Forssell and T. Hallberg, “Calibrated sensitive polarization measurements methods in the regions 3-5 µm and 8-12 µm, corrected for contributions to the detector signal from the polarizer,” Proc. SPIE 4481, 257–269 (2002).
[Crossref]

2001 (3)

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

2000 (1)

1999 (2)

1996 (1)

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
[Crossref]

1994 (1)

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

1992 (2)

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

1981 (1)

1954 (1)

Andrefouet, S.

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
[Crossref]

Bailey, S. W.

Brewer, C. D.

C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
[Crossref]

Chan, P. M.

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

Cheney, M. C.

Cooper, A. W.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
[Crossref]

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

Cox, C.

Cremer, F.

F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
[Crossref]

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

Crittenden, E. C.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

de Jong, A. N.

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

de Jong, W.

F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
[Crossref]

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

Deschamps, P. Y.

Duncan, B. D.

C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
[Crossref]

Elsner, A. E.

Forssell, G.

G. Forssell and T. Hallberg, “Calibrated sensitive polarization measurements methods in the regions 3-5 µm and 8-12 µm, corrected for contributions to the detector signal from the polarizer,” Proc. SPIE 4481, 257–269 (2002).
[Crossref]

Fougnie, B.

Frouin, R.

Goodman, J. A.

Gregoris, D. J.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

Hallberg, T.

G. Forssell and T. Hallberg, “Calibrated sensitive polarization measurements methods in the regions 3-5 µm and 8-12 µm, corrected for contributions to the detector signal from the polarizer,” Proc. SPIE 4481, 257–269 (2002).
[Crossref]

Hamada, T.

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

Hedley, J. D.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Heeck, K.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Hochberg, E.

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
[Crossref]

Hong, S.

S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
[Crossref]

Jin, L.

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

Kay, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Lavender, S.

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Lecomte, P.

Lee, Z.

Lentz, W. J.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
[Crossref]

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

Limburg, R.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Marston, C.

Milne, E. A.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

Miura, M.

Moss, E.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

Munk, W.

Otani, Y.

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

Ou, M.-L.

S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
[Crossref]

Pannetier, M.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Roorda, V. L. G.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Schutte, K.

F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
[Crossref]

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

Schwering, P. B. W.

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

Shaw, J.

Shaw, J. A.

Shin, I.

S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
[Crossref]

Sidran, M.

Tyler, M.

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
[Crossref]

Umeda, N.

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

Ustin, S. L.

van Zetten, K.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

VanNasdale, D. A.

Voorwinden, A. R.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Walker, P. L.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
[Crossref]

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

Wang, M.

Watson, E. A.

C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
[Crossref]

Weber, A.

Welling, M.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Wijngaarden, R. J.

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Yu, S.

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

Appl. Opt. (5)

IEEE Trans. Geosci. Remote Sens. (1)

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41(7), 1724–1729 (2003).
[Crossref]

J. Atmos. Ocean. Technol. (1)

S. Hong, I. Shin, and M.-L. Ou, “Comparison of the infrared surface emissivity model (ISEM) with a physical emissivity model,” J. Atmos. Ocean. Technol. 27(2), 345–352 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (3)

F. Cremer, W. de Jong, and K. Schutte, “Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines,” Opt. Eng. 41(5), 1021–1032 (2002).
[Crossref]

C. D. Brewer, B. D. Duncan, and E. A. Watson, “Sensitivity comparison of ladar receivers designed to detect glint targets,” Opt. Eng. 41(7), 1577–1585 (2002).
[Crossref]

L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43(1), 181–185 (2004).
[Crossref]

Opt. Express (1)

Proc. SPIE (6)

A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” Proc. SPIE 2223, 300–309 (1994).
[Crossref]

F. Cremer, P. B. W. Schwering, W. de Jong, K. Schutte, and A. N. de Jong, “Infrared polarization measurements of targets and backgrounds in a marine environment,” Proc. SPIE 4370, 1–12 (2001).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

D. J. Gregoris, S. Yu, A. W. Cooper, and E. A. Milne, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 381–391 (1992).
[Crossref]

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” Proc. SPIE 2828, 85–96 (1996).
[Crossref]

G. Forssell and T. Hallberg, “Calibrated sensitive polarization measurements methods in the regions 3-5 µm and 8-12 µm, corrected for contributions to the detector signal from the polarizer,” Proc. SPIE 4481, 257–269 (2002).
[Crossref]

Remote Sens. (1)

S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1(4), 697–730 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72(6), 2661–2664 (2001).
[Crossref]

Other (1)

J. J. Beard, Reduction of solar glints from the sea with a linear polarizer. No. ERIM-120500–9-T. Environmental Research Inst Of Michiganann Arbor, 1976. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA036152

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of infrared system measuring L0.
Fig. 2
Fig. 2 Relationships between DP, λ, and θ.
Fig. 3
Fig. 3 Schematic of sun-glint geometry.
Fig. 4
Fig. 4 Schematic showing use of one polarizer to suppress s- and p-polarized sun-glint components.
Fig. 5
Fig. 5 Schematic of proposed mid-infrared polarization imaging system.
Fig. 6
Fig. 6 Prototype of mid-infrared polarization imaging system.
Fig. 7
Fig. 7 Target boat.
Fig. 8
Fig. 8 Images of sun glint at experimental site in (a) visible and (b) mid-infrared wavelength bands. These images were obtained at 3:30 p.m. with θs = 54°19′48” and φs = 99°51′12”.
Fig. 9
Fig. 9 Images of sun glint at experimental site acquired using only one vertical polarizer in (a) infrared and (b) visible wavelength bands. These images were obtained at 3:45 p.m. with θs = 56°06′26” and φs = 98°42′37”.
Fig. 10
Fig. 10 Image obtained using θp = 45° (a) before and (b) after processing.

Tables (1)

Tables Icon

Table 1 Varimage for different θp.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

L 0 ( λ , θ v , θ s , φ ) = L t ( λ , θ v , θ s , φ ) + L b g ( λ , θ v , θ s , φ ) ,
L b g ( λ , θ v , θ s , φ ) = L S S T ( λ , θ v , θ s , φ ) + L S k y ( λ , θ v , θ s , φ ) + L S u n ( λ , θ v , θ s , φ ) ,
{ ρ s ( λ , θ ) = | cos ( θ ) n ( λ ) cos ( θ r ) cos ( θ ) + n ( λ ) cos ( θ r ) | 2 ρ p ( λ , θ ) = | n ( λ ) cos ( θ ) cos ( θ r ) n ( λ ) cos ( θ ) + cos ( θ r ) | 2 ,
{ ε s ( λ , θ ) = 1 ρ s ( λ , θ ) ε p ( λ , θ ) = 1 ρ p ( λ , θ ) ,
D P = ρ g l i n t s ρ g l i n t p ρ g l i n t s + ρ g l i n t p ,
S D = n 2 cos ω ,
cos 2 ω = cos θ s cos θ d + sin θ s sin θ d cos ( φ s φ d ) ,
cos α = cos θ s + cos θ d 2 cos ω ,
cos β = sin θ s cos φ s + sin θ d cos φ d 2 cos ω sin α ,
sin β = sin θ s sin φ s + sin θ d sin φ d 2 cos ω sin α .
{ z x = z x = tan α cos β z y = z y = tan α sin β .
{ z x = z x = sin θ s cos φ s + sin θ d cos φ d cos θ s + cos θ v z y = z y = sin θ s sin φ s + sin θ d sin φ d cos θ s + cos θ v .
p ( z x , z y ) = 1 2 π σ w σ c exp ( ξ 2 + η 2 2 ) [ 1 1 2 c 21 η ( ξ 2 1 ) 1 6 c 03 η ( η 2 3 η ) + 1 24 c 40 ( ξ 4 6 ξ 2 + 3 ) + 1 4 c 22 ( ξ 2 1 ) ( η 2 1 ) + 1 24 c 04 ( η 4 6 η 2 + 3 ) + ... ] ,
ξ = z x σ w ,
η = z y σ c ,
{ σ c 2 = 0.0053 + 0.000671 W σ w 2 = 0.0048 + 0.00152 W σ 2 = σ c 2 + σ w 2 .
ρ g l i n t ( λ , θ s , θ d , φ s , φ d , W ) = π r ( ω , λ ) p ( θ s , θ d , φ s , φ d , W ) 4 cos θ s cos θ d cos 4 α ,
L g l i n t = T ( λ ) ρ g l i n t E cos θ s π = T ( λ ) ρ g l i n t L cos θ s
L g l i n t = T ( λ ) L π r ( ω , λ ) p ( θ s , θ d , φ s , φ d , W ) 4 cos 4 α cos θ d .
D N = Ω s A d R τ o p t τ i n t τ a t m G λ 1 λ 2 L λ d λ + b ,
D N = a L g + b ,
C = | D N t - D N g l i n t | .
C = | ( a L t + b ) ( a L g l i n t + b ) | = a | L t ( L g l i n t s - p o l a r i z e d + L g l i n t p - p o l a r i z e d ) | .
R ' = D N b g / D N t a r g e t = 1 k l k ' l ' | ( i = m m + k 1 j = n n + l 1 b g i j i = m ' m ' + k ' 1 j = n ' n ' + l ' 1 t i j ) | / 1 k ' l ' i = m ' m ' + k ' 1 j = n ' n ' + l ' 1 t i j ,
C = a | 0.5 L t L g l i n t p - p o l a r i z e d | .
( a L g l i n t p p o l a r i z e d + b ) 2 N 1 ,
( a L g l i n t p p o l a r i z e d cos 2 θ p + b ) > 2 N 1.
C = a | 0.5 L t cos 2 θ p L g l i n t p - p o l a r i z e d cos 2 θ p | .
C ( θ o p t ) = Maximize ( a | 0.5 L t cos 2 θ L g l i n t p - p o l a r i z e d cos 2 θ | ) .
a L g l i n t p p o l a r i z e d cos 2 θ o p t + b = 2 N 1 ,
θ o p t = arc cos ( [ ( 2 N 1 ) b ] / a L g l i n t p - p o l a r i z e d ) .
V a r i m a g e = i = 1 m j = 1 n ( P i x e l i j i = 1 m j = i n P i x e l i j m n ) 2 m n .

Metrics