Abstract

In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Faraday anomalous dispersion optical filter at 133Cs weak 459  nm transition

Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, and Hong Guo
Photon. Res. 3(5) 275-278 (2015)

An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo
Opt. Express 22(7) 7416-7421 (2014)

Excited state Faraday anomalous dispersion optical filters based on indirect laser pumping

Longfei Yin, Bin Luo, Zhongjie Chen, Lei Zhong, and Hong Guo
Opt. Lett. 39(4) 842-844 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21(11), 2069–2075 (1982).
    [Crossref] [PubMed]
  2. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34(15), 2619–2622 (1995).
    [Crossref]
  3. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
    [Crossref]
  4. W. Huang, X. chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, ‘Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34(2), 199–201 (2009).
    [Crossref] [PubMed]
  5. X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
    [Crossref]
  6. P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
    [Crossref]
  7. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
    [Crossref] [PubMed]
  8. X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
    [Crossref]
  9. X. Liu, X. Chen, X. Yao, W. Yu, G. Zhai, and L. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39(8), 2314–2317 (2014).
    [Crossref] [PubMed]
  10. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20(1), 106–108 (1995).
    [Crossref] [PubMed]
  11. Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30(22), 5123–5129 (1997).
    [Crossref]
  12. G. Yang, R. I. Billmers, P. R. Herczfeld, and V. M. Contarino, “Temporal characteristics of narrow-band optical filters and their application in lidar systems,” Opt. Lett. 22(6), 414–416 (1997).
    [Crossref] [PubMed]
  13. A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37(21), 4477–4479 (2012).
    [Crossref] [PubMed]
  14. Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
    [Crossref]
  15. A. Cer, V. Parigi, M. Abad, F. Wolfgramm, A. Predojevic, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34(7), 1012–1014 (2009).
    [Crossref]
  16. Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
    [Crossref]
  17. L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
    [Crossref] [PubMed]
  18. W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (WILEY-VCH, 2010).
    [Crossref]
  19. J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
    [Crossref]
  20. Daniel A. Steck, “Rubidium 85 D Line Data,” http://steck.us/alkalidata .
  21. Daniel A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata .
  22. M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
    [Crossref]
  23. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University, 2010).
  24. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B 13(9), 1849–1858 (1996).
    [Crossref]

2015 (1)

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

2014 (4)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

X. Liu, X. Chen, X. Yao, W. Yu, G. Zhai, and L. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39(8), 2314–2317 (2014).
[Crossref] [PubMed]

L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
[Crossref] [PubMed]

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

2013 (1)

2012 (2)

A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37(21), 4477–4479 (2012).
[Crossref] [PubMed]

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

2010 (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

2009 (3)

2006 (1)

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

1997 (2)

1996 (1)

1995 (2)

1992 (1)

P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

1982 (1)

Abad, M.

Allocca, D. M.

Auzinsh, M.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University, 2010).

Berzins, A.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Billmers, R. I.

Budker, D.

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University, 2010).

Cer, A.

Chen, J.

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref]

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Chen, X.

chu, X.

Contarino, V. M.

Dang, A.

Dressler, E. T.

Duan, M.

Ferber, R.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Gahbauer, F.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Gan, J.

Gayen, S. K.

Gerhardt, I.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Guo, H.

Happer, W.

W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (WILEY-VCH, 2010).
[Crossref]

Harrell, S. D.

Herczfeld, P. R.

Hong, Y.

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref]

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Huang, W.

Jau, Y.

W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (WILEY-VCH, 2010).
[Crossref]

Kalnins, U.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Kalvans, L.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Kong, J.

L, Z.

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Laux, A. E.

Li, Y.

Liu, H.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

Liu, X.

Luo, B.

Luo, J.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Mitchell, M. W.

Parigi, V.

Peng, Y.

Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
[Crossref]

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30(22), 5123–5129 (1997).
[Crossref]

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Predojevic, A.

Rochester, S. M.

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University, 2010).

Rudolf, A.

Rundans, R.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Sarkisyan, D.

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Scharpf, W. J.

Shan, X.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Shay, T. M.

P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

She, C. Y.

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Squicciarini, M. F.

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Sun, X.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Tan, Z.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Tang, J.

Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
[Crossref]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34(15), 2619–2622 (1995).
[Crossref]

Tao, Z.

Valdez, E. C.

P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

Walker, T.

W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (WILEY-VCH, 2010).
[Crossref]

Walther, T.

A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37(21), 4477–4479 (2012).
[Crossref] [PubMed]

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Wang, J.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

Wang, Q.

Wanninger, P.

P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

Wiig, J.

Williams, B. P.

Wolfgramm, F.

Wrachtrup, J.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Wu, L.

Yang, B.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

Yang, G.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

G. Yang, R. I. Billmers, P. R. Herczfeld, and V. M. Contarino, “Temporal characteristics of narrow-band optical filters and their application in lidar systems,” Opt. Lett. 22(6), 414–416 (1997).
[Crossref] [PubMed]

Yao, X.

Yeh, P.

Yin, L.

Yu, W.

Z., W

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Zhai, G.

Zhan, M.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Zhang, L.

Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
[Crossref]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34(15), 2619–2622 (1995).
[Crossref]

Zhang, W.

Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
[Crossref]

Zhang, X.

Zheng, L.

Zhu, C.

Zhuang, W.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Appl. Phys. Lett. (2)

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, 191121 (2006).
[Crossref]

Q. Sun, Y. Hong, W Z., Z. L, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Wanninger, E. C. Valdez, and T. M. Shay, “Diode-laser frequency stabilization based on the resonant Faraday effect,” IEEE Photonics Technol. Lett. 4(1), 94–96 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30(22), 5123–5129 (1997).
[Crossref]

Nature (1)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Peng, W. Zhang, L. Zhang, and J. Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532 nm,” Opt. Commun. 282(2), 236–241 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (2)

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014)
[Crossref]

M. Auzinsh, A. Berzins, R. Ferber, F. Gahbauer, U. Kalnins, L. Kalvans, R. Rundans, and D. Sarkisyan, “Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D1 line,” Phys. Rev. A 91023410 (2015).
[Crossref]

Other (4)

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms (Oxford University, 2010).

Daniel A. Steck, “Rubidium 85 D Line Data,” http://steck.us/alkalidata .

Daniel A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata .

W. Happer, Y. Jau, and T. Walker, Optically Pumped Atoms (WILEY-VCH, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The corresponding energy levels of 1529 nm ES-FADOF [19]. The red lines (1529.4 nm) are the working transitions of the filter, and the blue lines (780.2 nm) are the pumping transitions.
Fig. 2
Fig. 2 Fig. 2(a.1) is the calculated population curve of 5P3/2 and Fig. 2(a.2) is the experimentally measured pumping laser absorption curve. The frequency reference (zero detuning) is the D2 line fine transition frequency of 85Rb. Figures 2(b.1) and 2(b.2) are the distribution of the population among hyperfine Zeeman sublevels under the optimal pumping frequency. The upper bar graph Fig. 2(b.1) is the population distribution among 24 hyperfine Zeeman sublevels of the 5P3/2 of 85Rb atoms. The lower bar graph Fig. 2(b.2) is the population distribution among 16 hyperfine Zeeman sublevels of the 5P3/2 of 87Rb atoms. These Zeeman sublevels are ordered by the energy from the highest to the lowest. Atoms mainly distribute in the mJ = 3/2 and mJ = −3/2 states. Figure 2(c) is the comparison of the peak transmittance of the 85Rb cell with the nature rubidium cell. The temperature is 110 °C.
Fig. 3
Fig. 3 Experiment setup Fig. 3(a) and Transmittance spectra Figs. 3(b.1)–3(b.4). In Fig. 3(a), P1 and P2 are two perpendicular polarizers, CM is the monochrome lenses with high reflectivity for 780 nm and high transmittance for 1529 nm, M1 and M2 are two mirrors, HWP is the half wavelength plate of 1529 nm, and ISO is the opto-isolator. The magnetic field is produced by a electromagnet. In Figs. 3(b.1)–3(b.4), the blue dashed line is the theoretical result and the red solid line is the experimental result.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

H ^ 0 = H ^ hfs + H ^ B ,
H ^ hfs = A ( I ^ J ^ ) + B 3 ( I ^ J ^ ) 2 + ( 3 / 2 ) I ^ J ^ I ^ 2 J ^ 2 2 I ( 2 I 1 ) J ( 2 J 1 ) ,
H ^ B = g J μ B J ^ B g 1 μ N I ^ B ,
| I , J , m I , m J = | I , m I | J , m J .
U ^ = [ U ^ e U ^ g ] .
i h ¯ d ρ ^ d t = [ H ^ 0 D ^ E , ρ ^ ] ,
D ^ = [ D ^ D ^ ] .
D ^ = U ^ g ( I m S m J | Sm S Sm S | e r ^ | Jm J Jm J | ) U ^ e ,
m S m J | Sm S Sm S | e r ^ | Jm J Jm J | = α Θ ^ ,
α = h ¯ c 3 ( 2 J + 1 ) Γ s { g e } 4 ω { e g } 3 ,
ξ 1 = x + i y 2 , ξ 0 = z , ξ 1 = x i y 2 ,
Sm s | Θ m | Jm J = 3 2 S + 1 C Jm J 1 m Sm s ,
i h ¯ d ρ ^ { e e } d t = ξ { e e } ρ ^ { e e } + V ^ ρ ^ { g e } ρ ^ { e g } V ^ ,
i h ¯ d ρ ^ { g e } d t = V ^ ρ ^ { e e } + ξ { g e } ρ ^ { g e } ρ ^ { g g } V ^ ,
i h ¯ d ρ ^ { e g } d t = ρ ^ { e e } V ^ + ξ { e g } ρ ^ { e g } + V ^ ρ ^ { g g } ,
i h ¯ d ρ ^ { g g } d t = i h ¯ ρ ^ s { g g } ρ ^ s { g e } V ^ + V ^ ρ ^ { e g } + ξ { g g } ρ ^ { g g } i h ¯ [ Γ c ( ρ ^ { g g } 1 N g ρ ^ 0 { g g } ) ] ,
V ^ = D ^ E .
ρ ^ s { g g } = 4 ω { e g } 3 3 h ¯ c 3 D ^ ρ ^ { e e } D ^ .
Γ c = v ¯ l + v ¯ L / 2 ,
v ¯ = 8 R T π M ,
ξ u u ¯ { e e } = E u ¯ E u ¯ i h ¯ γ 1 ,
ξ u u ¯ { g e } = E u E u ¯ i h ¯ γ 2 * + h ¯ ( Δ ω k v ) ,
ξ u u ¯ { e g } = E u ¯ E u i h ¯ γ 2 h ¯ ( Δ ω k v ) ,
ξ u u { g g } = E u E u .
ρ ^ u u ¯ { e e } ( Δ ω ) = v s f ( v s ) Δ v ρ ^ u u ¯ { e e } ( v s , Δ ω ) ,
T = 1 2 exp [ π ν 0 L c Im ( χ + + χ ) L ] × { cosh [ π ν 0 L c Im ( χ + χ ) ] cos [ π ν 0 L c Re ( χ + χ ) ] } ,
χ q = ( i ε 0 h ν 0 ) π M 0 c 2 2 k T × γ , M , γ , M N γ , M e 2 | γ , M | r q | γ , M | 2 × W [ M 0 c 2 2 k T ( Δ ν Δ ν γ M γ M ν 0 ) + i M 0 c 2 2 k T ( 1 4 π ν 0 τ ) ] ,
N ( T ) = N A × 133.32 × 10 2.881 + 4.857 4215 / T RT ,

Metrics