Abstract

We investigate the radiation angle of an oblique waveguide in a stripe-stacked three-dimensional photonic crystal. We show that the output-light is radiated in a different direction from the oblique waveguide direction. Moreover, the radiation polar angle varies from 30° to 50° depending on the frequency. To inhibit the frequency dependence and obtain vertical radiation, we introduced a symmetric structure at the end of the waveguide. As a result of cancellation of the in-plane asymmetric wavenumber, the radiation polar angle is less than 6° from the surface-normal direction and does not depend on frequency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of emission in finite-sized, three-dimensional photonic crystals with structural fluctuations

Kenji Ishizaki, Makoto Okano, and Susumu Noda
J. Opt. Soc. Am. B 26(6) 1157-1161 (2009)

Light propagation in three-dimensional photonic crystals

Shoichi Kawashima, Kenji Ishizaki, and Susumu Noda
Opt. Express 18(1) 386-392 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and elecronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [Crossref] [PubMed]
  3. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
    [Crossref] [PubMed]
  4. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
    [Crossref] [PubMed]
  5. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
    [Crossref] [PubMed]
  6. M. Maldovan and E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3, 593–600 (2004).
    [Crossref] [PubMed]
  7. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
    [Crossref] [PubMed]
  8. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35(7), 1094–1096 (2010).
    [Crossref] [PubMed]
  9. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
    [Crossref] [PubMed]
  10. W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
    [Crossref] [PubMed]
  11. I. Staude, C. McGuinness, A. Frlich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express 20, 5607–5612 (2012).
    [Crossref] [PubMed]
  12. K. Suzuki, K. Kitano, K. Ishizaki, and S. Noda, “Three-dimensional photonic crystals created by single-step multi-directional plasma etching,” Opt. Express 22, 17099–17106 (2014).
    [Crossref] [PubMed]
  13. T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
    [Crossref]
  14. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
    [Crossref]
  15. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739 (1999).
    [Crossref]
  16. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
    [Crossref]
  17. K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
    [Crossref]
  18. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
    [Crossref]
  19. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
    [Crossref] [PubMed]
  20. E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
    [Crossref]
  21. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
    [Crossref]
  22. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
    [Crossref]
  23. C.-C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006).
    [Crossref] [PubMed]

2015 (2)

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
[Crossref]

2014 (1)

2013 (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

2012 (1)

2011 (2)

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[Crossref] [PubMed]

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[Crossref] [PubMed]

2006 (2)

C.-C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006).
[Crossref] [PubMed]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

2005 (1)

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

2004 (5)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

M. Maldovan and E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3, 593–600 (2004).
[Crossref] [PubMed]

2003 (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

1999 (1)

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739 (1999).
[Crossref]

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and elecronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Arakawa, Y.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

Asano, T.

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Busch, K.

Byer, R. L.

Chan, C. T.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Chen, C.-C.

Chen, W. J.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739 (1999).
[Crossref]

Colby, E.

Dong, J. W.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Essig, S.

Frlich, A.

García-Vidal, F.

E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Gondaira, K.

K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Hang, Z. H.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Iliew, R.

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Ishizaki, K.

K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
[Crossref]

K. Suzuki, K. Kitano, K. Ishizaki, and S. Noda, “Three-dimensional photonic crystals created by single-step multi-directional plasma etching,” Opt. Express 22, 17099–17106 (2014).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[Crossref] [PubMed]

Iwamoto, S.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

Joannopoulos, J.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Kawashima, S.

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

Kitano, K.

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

Koumura, M.

K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Lederer, F.

Lee, L. H.

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Maldovan, M.

M. Maldovan and E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3, 593–600 (2004).
[Crossref] [PubMed]

Martín-Moreno, L.

E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

McGuinness, C.

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Moreno, E.

E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

Noda, S.

K. Gondaira, K. Ishizaki, M. Koumura, T. Asano, and S. Noda, “Role of surface mode on light out-coupling characteristics of waveguide in three dimensional photonic crystals,” J. Lightwave Technol. 33(22), 4531–4534 (2015).
[Crossref]

K. Suzuki, K. Kitano, K. Ishizaki, and S. Noda, “Three-dimensional photonic crystals created by single-step multi-directional plasma etching,” Opt. Express 22, 17099–17106 (2014).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[Crossref] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739 (1999).
[Crossref]

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

Ota, Y.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

Pertsch, T.

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Staude, I.

Suzuki, K.

K. Suzuki, K. Kitano, K. Ishizaki, and S. Noda, “Three-dimensional photonic crystals created by single-step multi-directional plasma etching,” Opt. Express 22, 17099–17106 (2014).
[Crossref] [PubMed]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

Tajiri, T.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

Takahashi, S.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

Tatebayashi, J.

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

Thiel, M.

Thomas, E. L.

M. Maldovan and E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3, 593–600 (2004).
[Crossref] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Tünnermann, A.

von Freymann, G.

Wang, H. Z.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Wegener, M.

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

Wolff, C.

Xiao, X.

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and elecronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

T. Tajiri, S. Takahashi, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Demonstration of a three-dimensional photonic crystal nanocavity in a < 110 >-layered diamond structure,” Appl. Phys. Lett. 107, 071102 (2015).
[Crossref]

A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739 (1999).
[Crossref]

M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006).
[Crossref]

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[Crossref]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Appl. Phys. Lett. 92, 113903 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Mater. (3)

M. Maldovan and E. L. Thomas, “Diamond-structured photonic crystals,” Nat. Mater. 3, 593–600 (2004).
[Crossref] [PubMed]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009).
[Crossref] [PubMed]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2, 117–121 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013).
[Crossref]

Nature (2)

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[Crossref] [PubMed]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

E. Moreno, F. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[Crossref]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Phys. Rev. Lett. (2)

W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, and C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and elecronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Science (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[Crossref] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic view of 3D light guiding structure in stripe-stacked 3D photonic crystal. (a) shows schematic structure of the connected oblique, horizontal and oblique waveguides. (b) shows schematic structure of overhead view of oblique waveguide. (c) The band diagram of oblique waveguide.
Fig. 2
Fig. 2 Calculation results of electric field pattern of the oblique waveguide at a frequency of 0.360c/a. (a) Cross-sectional view, (b) radiation power distribution in ϕ – θ plane, (c) radiation power distribution in stereographic projection, and (d) radiation pattern in (100) plane.
Fig. 3
Fig. 3 Calculation results of eigenmode analysis of the oblique waveguide at a frequency of 0.360c/a. (a) Electric field pattern of E[100] in (001) plane, (b) absolute value of spatial Fourier-transform spectrum of E[100] (wavevector distribution), and (c) schematic illustration of the wavenumber conservation law.
Fig. 4
Fig. 4 Calculated radiation angle of light observed at spherical surface and light estimation by electric field pattern of eigenmode of oblique waveguide.
Fig. 5
Fig. 5 Schematic structure of original oblique waveguide (a,b) and the symmetric end structure (c,d).
Fig. 6
Fig. 6 Calculation results of electric field pattern of the symmetric end structure at frequency 0.360c/a. (a),(b) Cross-sectional views, (c) radiation power distribution in ϕ – θ plane, (d) radiation power distribution in stereographic projection, and (e) radiation pattern at (100) plane.
Fig. 7
Fig. 7 Frequency dependence of radiation angle and reflectance, and collection efficiency. The solid lines and the dashed lines are results for the symmetric end structure and the original structure, respectively.

Metrics