Abstract

We explore adaptive optics (AO) pre-compensation for optical communication between Earth and geostationary (GEO) satellites in a laboratory experiment. Thus, we built a rapid control prototyping breadboard with an adjustable point-ahead angle where downlink and uplink can operate both at 1064 nm and 1550 nm wavelength. With our real-time system, beam wander resulting from artificial turbulence was reduced such that the beam hits the satellite at least 66% of the time as compared to merely 3% without correction. A seven-fold increase of the average Strehl ratio to (28 ± 15)% at 18 μrad point-ahead angle leads to a considerable reduction of the calculated fading probability. These results make AO pre-compensation a viable technique to enhance Earth-to-GEO optical communication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Validation of pre-compensation under point-ahead-angle in a 1 km free-space propagation experiment

Aoife Brady, Conrad Rössler, Nina Leonhard, Marlies Gier, Paul Böttner, Ramona Eberhardt, Andreas Tünnermann, and Claudia Reinlein
Opt. Express 27(13) 17840-17850 (2019)

Experimental validation of phase-only pre-compensation over 494  m free-space propagation

Aoife Brady, René Berlich, Nina Leonhard, Teresa Kopf, Paul Böttner, Ramona Eberhardt, and Claudia Reinlein
Opt. Lett. 42(14) 2679-2682 (2017)

Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle

Mo Chen, Chao Liu, Daoman Rui, and Hao Xian
Opt. Express 26(4) 4230-4242 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
    [Crossref]
  2. T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
    [Crossref]
  3. M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
    [Crossref]
  4. E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.
  5. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
    [Crossref]
  6. J. D. Barchers and D. L. Fried, “Optimal control of laser beams for propagation through a turbulent medium,” J. Opt. Soc. Am. A 19(9), 1779–1793 (2002).
    [Crossref]
  7. J. H. Shapiro, “Reciprocity of the turbulent atmosphere,” J. Opt. Soc. Am. 61(4), 492–495 (1971).
    [Crossref]
  8. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10(7), 1652–1658 (1971).
    [Crossref] [PubMed]
  9. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72(1), 52–61 (1982).
    [Crossref]
  10. F. Chassat, “Theoretical evaluation of the isoplanatic patch of an adaptive optics system working through the atmospheric turbulence,” Journal of Optics 20(1), 13 (1989).
    [Crossref]
  11. R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38(13), 2367–2369 (2013).
    [Crossref] [PubMed]
  12. Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
    [Crossref]
  13. N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).
  14. E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
    [Crossref]
  15. S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
    [Crossref]
  16. H. Zech, F. Heine, and M. Motzigemba, “Laser Communication Terminal: Product Status and Industrialization Process,” in Proc. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, May 7–9 (2014).
  17. Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
    [Crossref]
  18. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
    [Crossref]
  19. R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).
    [Crossref]
  20. D. L. Fried, “Time-delay-induced mean-square error in adaptiv eoptics,” J. Opt. Soc. Am. A 7, 1224–1225 (1990).
    [Crossref]
  21. B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
    [Crossref]
  22. H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.
  23. C. Reinlein, M. Goy, N. Lange, and M. Appelfelder, “Mounting with compliant cylinders for deformable mirrors,” Opt. Lett. 40(7), 1536–1539 (2015).
    [Crossref] [PubMed]
  24. S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
    [Crossref]
  25. S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
    [Crossref]
  26. S. Mauch and J. Reger, “Real-time spot detection and ordering for a Shack Hartmann wavefront sensor with a low-cost FPGA,” IEEE Trans. Instrum. Meas. 63(10), 2379–2386 (2014).
    [Crossref]

2016 (1)

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

2015 (2)

C. Reinlein, M. Goy, N. Lange, and M. Appelfelder, “Mounting with compliant cylinders for deformable mirrors,” Opt. Lett. 40(7), 1536–1539 (2015).
[Crossref] [PubMed]

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

2014 (4)

S. Mauch and J. Reger, “Real-time spot detection and ordering for a Shack Hartmann wavefront sensor with a low-cost FPGA,” IEEE Trans. Instrum. Meas. 63(10), 2379–2386 (2014).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

2013 (2)

R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38(13), 2367–2369 (2013).
[Crossref] [PubMed]

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

2011 (1)

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

2010 (1)

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

2009 (1)

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

2004 (1)

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

2002 (1)

1990 (1)

1989 (1)

F. Chassat, “Theoretical evaluation of the isoplanatic patch of an adaptive optics system working through the atmospheric turbulence,” Journal of Optics 20(1), 13 (1989).
[Crossref]

1982 (1)

1971 (2)

Ahmed, N.

Alonso, A.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

Appelfelder, M.

C. Reinlein, M. Goy, N. Lange, and M. Appelfelder, “Mounting with compliant cylinders for deformable mirrors,” Opt. Lett. 40(7), 1536–1539 (2015).
[Crossref] [PubMed]

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Bao, C.

Barchers, J. D.

Barrios, R.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Barth, A.

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

Beckert, E.

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Berkefeld, T.

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Biérent, R.

Boyd, R. W.

Castro-Almazán, J.

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

Chan, V. W. S.

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Chassat, F.

F. Chassat, “Theoretical evaluation of the isoplanatic patch of an adaptive optics system working through the atmospheric turbulence,” Journal of Optics 20(1), 13 (1989).
[Crossref]

Chen, M.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Czichy, R.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Czichy, R. H.

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Dimitrov, S.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Dreischer, T.

N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).

Eff-Darwich, A.

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

Feriencik, M.

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Fischer, E.

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Frazier, B. W.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).
[Crossref]

Fried, D. L.

Fuensalida, J. J.

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

García-Lorenzo, B.

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

Giggenbach, D.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Goy, M.

C. Reinlein, M. Goy, N. Lange, and M. Appelfelder, “Mounting with compliant cylinders for deformable mirrors,” Opt. Lett. 40(7), 1536–1539 (2015).
[Crossref] [PubMed]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Gregory, M.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Heine, F.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

H. Zech, F. Heine, and M. Motzigemba, “Laser Communication Terminal: Product Status and Industrialization Process,” in Proc. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, May 7–9 (2014).

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Huang, H.

Kaltenbach, V.

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Kunde, J.

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Lange, N.

Lanucara, M.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Lavery, M. P. J.

Lee, E. J.

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

Li, L.

Liu, C.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Liva, G.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Lutomirski, R. F.

Lutzer, M.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Mata-Calvo, R.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Matuz, B.

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

Mauch, S.

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

S. Mauch and J. Reger, “Real-time spot detection and ordering for a Shack Hartmann wavefront sensor with a low-cost FPGA,” IEEE Trans. Instrum. Meas. 63(10), 2379–2386 (2014).
[Crossref]

Meyer, R.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Michau, V.

Montilla, I.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Motzigemba, M.

H. Zech, F. Heine, and M. Motzigemba, “Laser Communication Terminal: Product Status and Industrialization Process,” in Proc. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, May 7–9 (2014).

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Muehlnikel, G.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Neifeld, M. A.

Panzlaff, K.

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Perdigues, J.

N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).

Perdigues Armengol, J.

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Perlot, N.

N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).

Philipp-May, S.

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

Pimentel, P. M.

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Reger, J.

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

S. Mauch and J. Reger, “Real-time spot detection and ordering for a Shack Hartmann wavefront sensor with a low-cost FPGA,” IEEE Trans. Instrum. Meas. 63(10), 2379–2386 (2014).
[Crossref]

Reinlein, C.

C. Reinlein, M. Goy, N. Lange, and M. Appelfelder, “Mounting with compliant cylinders for deformable mirrors,” Opt. Lett. 40(7), 1536–1539 (2015).
[Crossref] [PubMed]

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Ren, Y.

Sans, M.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Shapiro, J. H.

Smit, H.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Sodnik, Z.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

Soltau, D.

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Troendle, D.

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Tröndle, D.

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Tünnermann, A.

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

Tur, M.

Tyson, R. K.

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).
[Crossref]

Védrenne, N.

Velluet, M.-T.

Wandernoth, B.

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

Weinert, C. M.

N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).

Willner, A. E.

Xian, H.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Xie, G.

Yan, Y.

Yura, H. T.

Zayer, I.

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

Zech, H.

H. Zech, F. Heine, and M. Motzigemba, “Laser Communication Terminal: Product Status and Industrialization Process,” in Proc. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, May 7–9 (2014).

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Appl. Opt. (1)

IEEE J. Sel. Areas Commun. (1)

E. J. Lee and V. W. S. Chan, “Part 1: optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

S. Mauch and J. Reger, “Real-time spot detection and ordering for a Shack Hartmann wavefront sensor with a low-cost FPGA,” IEEE Trans. Instrum. Meas. 63(10), 2379–2386 (2014).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Journal of Optics (1)

F. Chassat, “Theoretical evaluation of the isoplanatic patch of an adaptive optics system working through the atmospheric turbulence,” Journal of Optics 20(1), 13 (1989).
[Crossref]

Month. Not. Royal Astronom. Soc. (1)

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. Castro-Almazán, “Adaptive optics parameters connection to wind speed at the Teide observatory: corrigendum,” Month. Not. Royal Astronom. Soc. 414(2), 801–809 (2011).
[Crossref]

Opt. Commun. (1)

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[Crossref]

Opt. Lett. (2)

Optica (1)

Proc. SPIE (6)

Z. Sodnik, H. Smit, M. Sans, I. Zayer, M. Lanucara, I. Montilla, and A. Alonso, “LLCD operations using the lunar lasercom OGS terminal,” Proc. SPIE 8971, 89710W (2014).
[Crossref]

S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and A. Tünnermann, “FPGA-accelerated adaptive optics wavefront control,” Proc. SPIE 8978, 897802 (2014).
[Crossref]

S. Mauch, A. Barth, J. Reger, C. Reinlein, M. Appelfelder, and E. Beckert, “FPGA-accelerated adaptive optics wavefront control part II,” Proc. SPIE 9343, 93430Y (2015).
[Crossref]

Z. Sodnik, J. Perdigues Armengol, R. H. Czichy, and R. Meyer, “Adaptive optics and ESA’s optical ground station,” Proc. SPIE 7464, 746406 (2009).
[Crossref]

T. Berkefeld, D. Soltau, R. Czichy, E. Fischer, B. Wandernoth, and Z. Sodnik, “Adaptive optics for satellite-to-ground laser communication at the 1m telescope of the ESA optical ground station, Tenerife, Spain,” Proc. SPIE 7736, 77364C (2010).
[Crossref]

M. Gregory, D. Troendle, G. Muehlnikel, F. Heine, R. Meyer, M. Lutzer, and R. Czichy, “Three years coherent space to ground links: performance results and outlook for the optical ground station equipped with adaptive optics,” Proc. SPIE 8610, 861004 (2013).
[Crossref]

Other (7)

E. Fischer, T. Berkefeld, M. Feriencik, M. Feriencik, V. Kaltenbach, D. Soltau, B. Wandernoth, R. Czichy, and J. Kunde, “Development, integration and test of a transportable adaptive optical ground station,” in International Conference on Space Optical Systems and Applications (ICSOS, 2015), 27–28.

N. Perlot, T. Dreischer, C. M. Weinert, and J. Perdigues, “Optical GEO Feeder Link Design”, in Future Network & MobileSummit 2012 Conference Proceedings, Paul Cunningham and Miriam Cunningham, eds. (IIMC International Information Management Corporation, 2012).

S. Dimitrov, R. Barrios, B. Matuz, G. Liva, R. Mata-Calvo, and D. Giggenbach, “Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics,” Int. J. Satell. Commun. Netw., in press (2015).
[Crossref]

H. Zech, F. Heine, and M. Motzigemba, “Laser Communication Terminal: Product Status and Industrialization Process,” in Proc. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, May 7–9 (2014).

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media (SPIE, 2005).
[Crossref]

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics (SPIE, 2004).
[Crossref]

H. Zech, F. Heine, D. Tröndle, P. M. Pimentel, K. Panzlaff, M. Motzigemba, R. Meyer, and S. Philipp-May, LCTS on Alphasat and Sentinel 1A: in orbit status of the LEO to GEO data relay system, in International Conference on Space Optics (2014), pp. 1–23.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Baseline scenario: a satellite sends a downlink beam which is used at the optical ground station (OGS) to measure wavefront distortions caused by turbulence. The OGS sends an uplink beam pre-compensated by the AO system back to the satellite. The OGS needs to incorporate a point-ahead angle (PAA). (b) Definition of the Strehl ratio S: ratio of the central irradiance of the distorted beam (red dashed curve) Idistorted and the central irradiance of the diffraction-limited beam (blue curve) Iideal.
Fig. 2
Fig. 2 Sketch of the optical design layout: The downlink (red line) is collimated, passes the aberration emulator and enters the system at the aperture stop. After passing the tip/tilt and deformable mirror, it is split into two parts for wavefront sensing and possibly communication purposes. The uplink beam (blue lines) passes the system in the opposite direction starting from the fiber and ending at the uplink camera. When the uplink fiber is shifted, the beam leaves the system at a different point-ahead angle (dark blue dotted line).
Fig. 3
Fig. 3 Sketch of the deformable mirror actuator layout (a) with aperture (red) and compliant cylinders to mount the mirror on a baseplate. A photograph of the manufactured mirror is shown in (b).
Fig. 4
Fig. 4 Signal path from the slopes ϕ to the actuator voltages vDM and vTT.
Fig. 5
Fig. 5 Bode plot: the solid line denotes the frequency response of the mirror in open loop configuration Sd(s). The disturbance rejection G(s) is displayed as dash-dotted line, showing the ability of the closed-loop to attenuate disturbances up to approximately 72Hz.
Fig. 6
Fig. 6 Cumulative distribution function (CDF) of the measured beam wander. The blue line shows the compensated beam at vanishing point-ahead angle while the yellow and red curve denote the case at +θGEO and −θGEO, respectively. The case without compensation is shown by the green curve.
Fig. 7
Fig. 7 Temporal evolution of Strehl ratio (a) without compensation and with compensation at vanishing point-ahead angle and (b) with compensation at point-ahead angle +θGEO.
Fig. 8
Fig. 8 Far field (a) without, (b) with pre-compensation at 0 point-ahead angle and (c) with pre-compensation at θGEO; (a) shows a broad speckle pattern whereas in (b) and (c) a narrow peak can be seen. Please note that the differences of the image center are only caused by the necessity to move the uplink camera between measurements.
Fig. 9
Fig. 9 Comparison of achievable Strehl ratio for different point-ahead angles: blue points represent the average value and the error bars correspond to the standard deviation. The theoretical decay as tabulated in [9] is given as the green solid line.

Tables (2)

Tables Icon

Table 1 Local Seeing Conditions Derived from Long-term Measurements Reported in [21]

Tables Icon

Table 2 Beam Diameters at Respective Optical Elements

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S = I distorted I ideal .
I GEO = S I 0 , GEO .
I 0 = P 0 π D 2 4 λ 2 R 2 T ,
S = exp ( σ 2 ) .
r 0 ~ cos 3 / 5 ( ξ ) λ 6 / 5 ,
θ 0 ~ cos 8 / 5 ( ξ ) λ 6 / 5 ,
τ 0 ~ cos 3 / 5 ( ξ ) λ 6 / 5 .
σ θ 2 = ( θ / θ 0 ) 5 / 3
σ Δ 2 = 6.88 ( Δ / r 0 ) 5 / 3
Δ = 0.31 r 0 θ θ 0 .
Δ AE = 0.31 r 0 D AE D Tel θ θ 0 .
G ( s ) = G WFS ( s ) G DM ( s )
S d ( s ) = 1 1 + G ( s ) C ( s )
β HWHM = 0.51 λ D Tel ,
P fade = P ( I I T ) .

Metrics