Abstract

We have developed an analytical model that provides a mechanistic description of the plasmonic enhancement of vibrational signals by infrared nanoantennas. Our treatment is based on a coupled-point-dipole model which considers the interaction between a point-like nanoantenna and a single vibrational dipole moment. This idealized model is refined in two consecutive steps. The first step generalizes the model to make the treatment of non-point-like nanoantennas possible. The second step deals with local-field effects originating from the mutual interaction of the molecular vibrations. We have compared the results of our model with finite-difference time-domain simulations, and we find that our model predicts both the lineshapes and the amplitudes of the vibrational signals in a quantitative manner. Our analysis shows that the local-field effects play a surprisingly dominant role in the plasmonic enhancement, and we discuss possibilities of engineering this local field in order to further boost the plasmonic amplification.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

Mahsa Darvishzadeh-Varcheie, Caner Guclu, Regina Ragan, Ozdal Boyraz, and Filippo Capolino
Opt. Express 24(25) 28337-28352 (2016)

Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement

Yan-Hui Deng, Zhong-Jian Yang, and Jun He
Opt. Express 26(24) 31116-31128 (2018)

Enhanced ultrafast infrared spectroscopy using coupled nanoantenna arrays

F. Kusa, I. Morichika, A. Takegami, and S. Ashihara
Opt. Express 25(11) 12896-12907 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
    [Crossref]
  2. M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2880 (1997).
    [Crossref]
  3. A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
    [Crossref]
  4. E. Johnson and R. Aroca, “Surface-enhanced infrared-spectroscopy of monolayers,” J. Phys. Chem. 99, 9325–9330 (1995).
    [Crossref]
  5. M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95, 9914–9919 (1991).
    [Crossref]
  6. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88, 184104 (2006).
    [Crossref]
  7. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
    [Crossref] [PubMed]
  8. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
    [Crossref] [PubMed]
  9. S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
    [Crossref]
  10. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
    [Crossref]
  11. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
    [Crossref] [PubMed]
  12. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
    [Crossref] [PubMed]
  13. D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).
  14. J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
    [Crossref]
  15. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref] [PubMed]
  16. M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
    [Crossref]
  17. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
    [Crossref] [PubMed]
  18. S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
    [Crossref] [PubMed]
  19. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
    [Crossref] [PubMed]
  20. O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
    [Crossref] [PubMed]
  21. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  22. H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
    [Crossref]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 2004).
  24. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  25. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  26. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  27. T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
    [Crossref]
  28. P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
    [Crossref] [PubMed]
  29. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
    [Crossref] [PubMed]
  30. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc., 1999).
  31. A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
    [Crossref]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2015 (6)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
[Crossref] [PubMed]

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

2014 (2)

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

2013 (5)

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

2012 (2)

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
[Crossref] [PubMed]

2011 (1)

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[Crossref] [PubMed]

2009 (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

2006 (1)

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88, 184104 (2006).
[Crossref]

2002 (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

1999 (1)

A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
[Crossref]

1997 (1)

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2880 (1997).
[Crossref]

1995 (1)

E. Johnson and R. Aroca, “Surface-enhanced infrared-spectroscopy of monolayers,” J. Phys. Chem. 99, 9325–9330 (1995).
[Crossref]

1994 (1)

1991 (1)

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95, 9914–9919 (1991).
[Crossref]

1980 (1)

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[Crossref]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Abb, M.

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Aizpurua, J.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Albella, P.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Alonso-Gonzalez, P.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Aroca, R.

E. Johnson and R. Aroca, “Surface-enhanced infrared-spectroscopy of monolayers,” J. Phys. Chem. 99, 9325–9330 (1995).
[Crossref]

Bagheri, S.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

Beck, S.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

Bjerke, A. E.

A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 2004).

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Casanova, F.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Chen, H. J.

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Chen, J.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

de Groot, C. H.

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Draine, B. T.

Dregely, D.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

Duan, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

Enders, D.

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88, 184104 (2006).
[Crossref]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Flatau, P. J.

Garcia-Etxarri, A.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Giessen, H.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

Gissibl, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

Glaser, T.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

Golmar, F.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Gottheim, S.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

Govorov, A. O.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

Griffiths, P. R.

A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
[Crossref]

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Hartstein, A.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[Crossref]

Hartung, A.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Hegnerova, K.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Hentschel, M.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Hoffmann, J. M.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Homola, J.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Hong, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Huck, C.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Hueso, L. E.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 2004).

Ikeda, M.

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95, 9914–9919 (1991).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc., 1999).

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Javier Garcia de Abajo, F.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Johnson, E.

E. Johnson and R. Aroca, “Surface-enhanced infrared-spectroscopy of monolayers,” J. Phys. Chem. 99, 9325–9330 (1995).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Kern, A. M.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[Crossref] [PubMed]

King, N.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Kirtley, J. R.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Lin, H. Q.

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Maier, S. A.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Martin, O. J. F.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[Crossref] [PubMed]

Mass, T. W. W.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Monterrat, E.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Muskens, O. L.

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Navarro-Cia, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Neubrech, F.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Neuman, T.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Osawa, M.

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2880 (1997).
[Crossref]

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95, 9914–9919 (1991).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Papasimakis, N.

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88, 184104 (2006).
[Crossref]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Rahmani, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Rezus, Y. L. A.

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
[Crossref] [PubMed]

Richter, J.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Schnell, M.

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

Selig, O.

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
[Crossref] [PubMed]

Shao, L.

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Siffels, R.

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
[Crossref] [PubMed]

Sipova, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

Sobhani, H.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Soldera, A.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Taubner, T.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Theiss, W.

A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
[Crossref]

Tsang, J. C.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[Crossref]

Vogelgesang, R.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

Wang, J. F.

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Wang, Y. D.

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

Weber, K.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

Weiss, T.

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

Woo, K. C.

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Yin, X. H.

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Zhang, H.

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

ACS Nano (4)

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[Crossref]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8, 6250–6258 (2014).
[Crossref] [PubMed]

S. Gottheim, H. Zhang, A. O. Govorov, and N. J. Halas, “Fractal nanoparticle plasmonics: the cayley tree,” ACS Nano 9, 3284–3292 (2015).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6, 7998–8006 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography: effects of collective excitations on seira enhancement,” ACS Photonics 2, 779–786 (2015).
[Crossref]

Anal. Chem. (1)

A. E. Bjerke, P. R. Griffiths, and W. Theiss, “Surface-enhanced infrared absorption of Co on platinized platinum,” Anal. Chem. 71, 1967–1974 (1999).
[Crossref]

Appl. Phys. Lett. (1)

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88, 184104 (2006).
[Crossref]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

M. Osawa, “Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS),” Bull. Chem. Soc. Jpn. 70, 2861–2880 (1997).
[Crossref]

J. Am. Chem. Soc. (1)

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (2)

E. Johnson and R. Aroca, “Surface-enhanced infrared-spectroscopy of monolayers,” J. Phys. Chem. 99, 9325–9330 (1995).
[Crossref]

M. Osawa and M. Ikeda, “Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films - contributions of electromagnetic and chemical mechanisms,” J. Phys. Chem. 95, 9914–9919 (1991).
[Crossref]

J. Phys. Chem. C (2)

J. M. Hoffmann, X. H. Yin, J. Richter, A. Hartung, T. W. W. Mass, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μ m,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

H. J. Chen, L. Shao, K. C. Woo, J. F. Wang, and H. Q. Lin, “Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Laser Photonics Rev. (1)

T. Neuman, P. Alonso-Gonzalez, A. Garcia-Etxarri, M. Schnell, R. Hillenbrand, and J. Aizpurua, “Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy,” Laser Photonics Rev. 9, 637–649 (2015).
[Crossref]

Nano Lett. (3)

M. Abb, Y. D. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14, 346–352 (2014).
[Crossref]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (seira),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

Nat. Commum. (1)

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commum. 4, 2237 (2013).

Phys. Rev. Lett. (5)

O. Selig, R. Siffels, and Y. L. A. Rezus, “Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas,” Phys. Rev. Lett. 114, 233004 (2015).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[Crossref] [PubMed]

Polymer (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009).
[Crossref] [PubMed]

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag, 2004).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a, top) Scanning electron microscope image of an array of gold nanoantennas fabricated on top of a CaF2 substrate. (a, bottom) Geometry used in the FDTD simulations to calculate the cross section of an isolated nanoantenna and its modification due to the presence of a shell of dielectric material. (b) Simulated extinction cross sections of gold nanoantennas on top of CaF2. The nanoantennas have a width of 200 nm, a height of 100 nm and a varying length (1600 nm, 2000 nm and 2400 nm). (c) Cross-section spectrum of a 2000 nm nanoantenna (blue line) and of the same nanoantenna coated with a 10 nm layer of dielectric material characterized by an index of refraction of 1.48 (red line). The inset shows a zoom around the cross section maximum. (d) Cross-section spectrum of a 2000 nm nanoantenna (blue line) and of the same nanoantenna coated with a 10 nm layer of PMMA. The PMMA is modeled using a Lorentzian absorption at 1730 cm−1 and a background refractive index of 1. (e) Effect of the nanoantenna length on the amplified vibrational line-shape. The curves are calculated by subtracting the spectrum of a bare nanoantenna from the spectrum of a coated nanoantenna. For clarity the different curves are shifted vertically by 10−12 m2.
Fig. 2
Fig. 2 Scattering diagrams representing the different terms in the expansion from Eq. (9). (a) Diagram representing the leading term in the expansion (n = 1 in the first summation symbol). (b) Diagram representing the leading term (n = 0) of the second summation symbol. This interaction process represents the direct interaction of the light with the vibrational dipole. (c,d) Scattering diagrams that are grouped together under the third summation symbol of Eq. (9).
Fig. 3
Fig. 3 Diagrams for computing the elements fxx and f x x . In (a) and (b) a radiating test dipole is located at position rfar and the radiation pattern experienced by the nanoantenna resembles an x-polarized plane wave. In (c) and (d) the radiating test dipole is placed in the near field of the nanoantenna at position rvib, so that it emulates a radiating vibrational dipole. Thin black arrows indicate electric fields while thick gray arrows indicate oscillating dipoles.
Fig. 4
Fig. 4 Comparison of the analytical model (Eq. (31)) with FDTD simulations. The blue curves represent FDTD simulations (coated nanoantennas minus uncoated nanoantenna) and the red curves are computed using Eq. (31) where the nanoantenna amplification factor F A 2 ¯ was taken from the simulations of the uncoated nanoantennas. The permittivity of the dielectric was modeled as a Lorentzian band (εlor = 0.0149, ω0 = 1730 cm−1, 2γ = 23 cm−1) with a background permittivity ε of 1.
Fig. 5
Fig. 5 Comparison of the analytical model (Eq. (31)) with FDTD simulations in the case of a dielectric represented by a frequency-independent refractive index of 1.48. The blue curves represent FDTD simulations (coated nanoantennas minus uncoated nanoantenna) and the red curves are computed using Eq. (31) where the nanoantenna amplification factor F A 2 ¯ was taken from the simulations of the uncoated nanoantennas.
Fig. 6
Fig. 6 Simulated (blue line) and calculated (red line) cross-section changes for nanoantennas coated with a dielectric material with a realistic model for the PMMA permittivity. The permittivity parameters used are εlor = 0.022, ω0 = 1730 cm−1, γ = 23 cm−1 and ε = n 2 = 2.19.
Fig. 7
Fig. 7 Schematic representation of the different electric fields that need to be considered when computing the polarizability of an ellipsoidal particle. Here we have drawn an oblate ellipsoid, for which the depolarization factor is approximately 0.5.
Fig. 8
Fig. 8 Simulated (blue line) and calculated (red line) cross-section changes for nanoantennas coated with a dielectric material with a realistic model for the PMMA permittivity. The calculations were done on the basis of Eq. (43) using a depolarization factor L of 0.49. The permittivity parameters used are εlor = 0.022, ω0 = 1730 cm−1, γ = 23 cm−1 and ε = n 2 = 2.19.
Fig. 9
Fig. 9 a) Plot of the vibrational polarizability of PMMA that follows from the experimental permittivity. b) Plot of the factor F M 2 assuming the experimental polarizability of PMMA and a depolarization factor L of 0.49.
Fig. 10
Fig. 10 Amplitude of the non-resonant (a) and resonant (b) cross-section change as a function of the background refractive index n = ε of the coating material. The data points represent the maximum of the simulated cross-section change (which lies at 1420 cm−1 for the non-resonant signal and 1730 cm−1 for the resonant signal). The simulations were carried out for a 2000 nm nanoantenna coated with a 10 nm layer of dielectric material characterized by the permittivity from Eq. (34) with εlor = 0.022, ω0 = 1730 cm−1 and 2γ = 23 cm−1. The green curves represent calculations based on Eqs. (51) and (52) with L = 0.49. The red curves represent calculations when the molecular field (MF) enhancement is neglected (i.e. F M 2 = 1). The magenta curves represent calculations where, in addition, the Lorentz local field (LLF) factor in the Clausius-Mossotti equation is ignored (i.e. ραvib = ε0(ε − 1)).
Fig. 11
Fig. 11 Diagrams for computing the element f x y . In these diagrams the far-field source is placed in such a way that the nanoantenna is illuminated under a slight angle θ. We have defined a secondary coordinate system with the z′ axis parallel to the k vector of the illumination; the x′ axis is perpendicular to this direction and parallel to the electric field of the source dipole.
Fig. 12
Fig. 12 Diagrams for computing the element f x z . In these diagrams the far-field source is placed in such a way that the nanoantenna is illuminated under a slight angle θ. We have defined a secondary coordinate system with the z′ axis parallel to the k vector of the illumination; the x′ axis is perpendicular to this direction and parallel to the electric field of the source dipole.
Fig. 13
Fig. 13 Diagrams for evaluating the radiation pattern of out-of-plane (a) and in-plane dipoles that are located above a substrate. We assume that the distance above the substrate is much smaller than the wavelength.

Equations (77)

Equations on this page are rendered with MathJax. Learn more.

σ = 2 π λ ε 0 Im [ α ]
σ = P inc I inc
P inc = 1 2 ω Im [ p E 0 * ] ,
p ant = α ant E 0 + α ant G ( r ant , r vib ) p vib
p vib = α vib E 0 + α vib G ( r vib , r ant ) p ant
p ant = α eff , ant E 0 = α ant + α ant α vib G 1 α ant α vib G 2 E 0
p vib = α eff , vib E 0 = α vib + α ant α vib G 1 α ant α vib G 2 E 0
Δ σ = 2 π λ ε 0 Im [ α eff , ant + α eff , vid α ant ]
Δ σ = 2 π λ ε 0 Im { n = 1 α ant n + 1 α vib n G 2 n + n = 0 α ant n α vib n + 1 G 2 n + 2 n = 0 α ant n + 1 α vib n + 1 G 2 n + 1 }
Δ σ = 2 π λ ε 0 Im [ ( α ant G ) 2 α vid ]
Δ σ = 2 π S sub λ ε 0 Im [ ( α ant G ) 2 α vib ]
S sub = 4 ( 1 + n s ) 2
Δ σ = 2 π S sub λ ε 0 Im [ α ant , x 2 ( G x x 2 + G y x 2 + G z x 2 ) α vib ]
G α β ( r 1 , r 2 ) = G β α ( r 2 , r 1 )
f α β = E α ( r vib ) E β ( 0 ) ( r vib )
Δ p vib = α vib ( f x x 1 f y x f z x ) E x ( 0 ) ( r vib )
f α β = p tot , α p vib , β
f x x = Δ p ant , x p vib , x + 1 , f x y = Δ p ant , x p vib , y , f x z = Δ p ant , x p vib , z
Δ σ = 2 π S sub λ ε 0 Im [ ( ( f x x 1 ) ( f x x 1 ) + f y x f x y + f z x f x z ) α vib ]
E ( r ) s i n θ p θ ^
p E / sin θ
E x ( r vib ) = G x x ( r vib , r far ) p test , x
E x ( 0 ) ( r vib ) = G x x ( 0 ) ( r vib , r far ) p test , x
f x x = G x x ( r vib , r far ) G x x ( 0 ) ( r vib , r far )
f x x = p tot , x p test , x
p tot , x E x ( r far )
p test , x E x ( 0 ) ( r far )
f x x = p tot , x p test , x = E x ( r far ) E x ( 0 ) ( r far ) = G x x ( r far , r vib ) G x x ( 0 ) ( r far , r vib )
f x x = f x x
Δ σ = 2 π S sub λ ε 0 Im [ ( ( f x x 1 ) 2 + f y x 2 + f z x 2 ) α vib ]
Δ σ = 2 π N S sub λ ε 0 Im [ F A 2 ¯ α vib ]
F A 2 ¯ = 1 V V ( ( f x x 1 ) 2 + f y x 2 + f z x 2 ) d V
F A 2 ¯ = 1 V V ( f x x 2 + f y x 2 + f z x 2 ) d V
ε = ε + ε res ( ω )
ε res ( ω ) = ε lor ω 0 2 ω 0 2 ω 2 2 i γ ω
ρ α vib = 3 ε 0 ( ε 1 ε + 2 )
E LLF = P 3 ε 0
E depol = L P ε 0
E = E 0 L P ε 0 + P 3 ε 0
E = F M E 0
F M = 1 1 + ρ α / ε 0 ( L 1 / 3 )
= ( ε + 2 ) / 3 L ( ε 1 ) + 1
Δ σ = 2 π N S sub λ ε 0 Im [ F A 2 ¯ F M 2 α vib ]
α vib ( ω ) = α res ( ω ) + α
F M 2 ( ω ) = ( F M 2 ) res ( ω ) + ( F M 2 )
Δ σ non res = 2 π N S sub λ ε 0 Im [ F A 2 ¯ ( F M 2 ) α ]
Δ σ r e s = 2 π N S sub λ ε 0 Im [ F A 2 ¯ [ ( F M 2 ) α res + α ( F M 2 ) res ] ]
a + c ε res ( ω ) c + d ε res ( ω ) a c + a c ( b a d c ) ε res ( ω )
Δ σ non-res ( ω ) = 2 π N S sub S nr λ ε 0 Im [ F A 2 ¯ ( ω ) ]
Δ σ res ( ω ) = 2 π N S sub S r λ ε 0 Im [ F A 2 ¯ ( ω ) ε res ( ω ) ]
S nr = ( ε + 2 ) ( ε 1 ) 3 ( L ( ε 1 ) + 1 ) 2
S r = ( 2 / 3 L ) ( ε 1 ) + 1 ( L ( ε 1 ) + 1 ) 3
f y x = G y x ( r vib , r far ) G x x ( 0 ) ( r vib , r far )
f x y = Δ p ant , x p test , y = E x ( r far ) E y ( 0 ) ( r far )
= G x y ( r far , r vib ) G y y ( 0 ) ( r far , r vib )
G y y ( 0 ) ( r far , r vib ) = G x x ( 0 ) ( r far , r vib )
f x y = f y x
f z x [ θ ] = E z ( r vib ) E x ( 0 ) ( r vib )
= G z x ( r vib , r far , θ ) G x x ( 0 ) ( r vib , r far , θ )
p ant , x E x ( r far , θ ) / sin ( π / 2 θ ) = E x ( r far , θ ) / cos ( θ )
p test , z E x ( 0 ) ( r far , θ ) / sin ( θ )
f x z [ θ ] = Δ p ant , x p test , z
= E x ( r far , θ ) E x ( 0 ) ( r far , θ ) / tan θ
= G x z ( r far , θ , r vib ) G x z ( 0 ) ( r far , θ , r vib ) / tan θ
f x z [ θ ] = G z x ( r vib , r far , θ ) G z x ( 0 ) ( r vib , r far , θ ) / tan θ
= G z x ( r vib , r far , θ ) G x x ( 0 ) ( r vib , r far , θ )
= f z x [ θ ]
f x z = f z x
E ( 1 + r θ ) sin θ p
E ( 1 r θ ) cos θ p | |
f x z [ θ ] = 1 + r θ 1 r θ E x ( r far , θ ) E x ( 0 ) ( r far , θ ) / tan θ
= 1 + r θ 1 r θ G x z ( r far , θ , r vib ) G x z ( 0 ) ( r far , θ , r vib ) / t a n θ
E z ( 0 ) ( r vib ) tan θ E x ( 0 ) ( r vib )
E x ( 0 ) ( r vib ) = ( 1 r θ ) cos θ E 0
E z ( 0 ) ( r vib ) = ( 1 + r θ ) sin θ E 0
G z x ( 0 ) ( r vib , r far , θ ) = tan θ 1 + r θ 1 r θ G x x ( 0 ) ( r vib , r far , θ )
f x z = f z x

Metrics