Abstract

We present that surface two-plasmon resonance (STPR) in electron plasma sheet produced by a femtosecond laser irradiating a solid surface is the self-formation mechanism of periodic subwavelength ripple structures. Peaks of overdense electrons, formed by resonant two-plasmon wave mode, pull bound ions out of the metal surface. Thus, the wave pattern of STPR is “carved” on the surface by Coulomb ablation (removal) due to periodic distributed strong electrostatic field produced by charge separation. To confirm the STPR model, we have performed analogical carving experiments by two femtosecond laser beams with perpendicular polarizations and time delay. The results explicitly show that two wave patterns of STPR generated by each beam are independently created in the pulse exposure area of a target surface, which is like the traditional “layer-carving” technique by comparison with the structured topological features. The time-scale of ablation dynamics and the electron temperature in ultrafast interaction are also verified by a time-resolved spectroscopy experiment and numerical simulation, respectively. The present model can self-consistently explain the formation of subwavelength ripple structures even with spatial periods shorter than half of the laser wavelength, shedding light on the understanding of ultrafast laser-solid interaction.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury
Opt. Express 23(15) 19432-19441 (2015)

Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses

Lei Wang, Bin-Bin Xu, Xiao-Wen Cao, Qian-Kun Li, Wen-Jing Tian, Qi-Dai Chen, Saulius Juodkazis, and Hong-Bo Sun
Optica 4(6) 637-642 (2017)

Ultrafast dynamics of the thin surface plasma layer and the periodic ripples formation on GaP crystal irradiated by a single femtosecond laser pulse

Jukun Liu, Hua Zhao, Ke Cheng, Jiaqi Ju, Donghai Feng, Shian Zhang, Zhenrong Sun, and Tianqing Jia
Opt. Express 27(26) 37859-37876 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  2. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  3. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  4. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
    [Crossref]
  5. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [Crossref] [PubMed]
  6. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  7. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  8. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref] [PubMed]
  9. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [Crossref]
  10. G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [Crossref]
  11. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [Crossref]
  12. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [Crossref]
  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [Crossref]
  14. L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
    [Crossref]
  15. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [Crossref]
  16. M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
    [Crossref]
  17. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  18. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
    [Crossref]
  19. Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express 17(23), 20756–20761 (2009).
    [Crossref] [PubMed]
  20. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  21. K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
    [Crossref]
  22. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).
  23. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
    [Crossref]
  24. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
    [Crossref]
  25. V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
    [Crossref]
  26. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  27. C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
    [Crossref]
  28. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [Crossref] [PubMed]
  29. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  30. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
    [Crossref] [PubMed]
  31. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
    [Crossref]
  32. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
    [Crossref]
  33. W. Rozmus and V. T. Tikhonchuk, “Skin effect and interaction of short laser pulses with dense plasmas,” Phys. Rev. A 42(12), 7401–7412 (1990).
    [Crossref] [PubMed]
  34. W. Rozmus and V. T. Tikhonchuk, “Heating of solid targets by subpicosecond laser pulses,” Phys. Rev. A 46(12), 7810–7814 (1992).
    [Crossref] [PubMed]
  35. B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
    [Crossref]
  36. M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett. 29(9), 565–567 (1972).
    [Crossref]
  37. J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
    [Crossref]
  38. J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5(5), 517–524 (1962).
    [Crossref]
  39. T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16(5), 722 (1973).
    [Crossref]
  40. S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
    [Crossref]
  41. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [Crossref]
  42. C. Kittel, Introduction to Solid State Physics, 5th ed (Wiley, 1976).
  43. J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
    [Crossref]
  44. A. Djaoui and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-produced plasma,” J Phys B: Al Mol Opt Phys 25, 2745–2762 (1992).
    [Crossref]
  45. E. G. Gamaly, “The interaction of ultrashort, powerful laser pulses with a solid target: Ion expansion and acceleration with time-dependent ambipolar field,” Phys. Fluids B 5(3), 944–949 (1993).
    [Crossref]
  46. H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
    [Crossref]

2014 (1)

K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
[Crossref]

2013 (3)

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
[Crossref]

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

2012 (3)

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

2011 (2)

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

2010 (1)

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

2009 (6)

V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
[Crossref]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Y. Huang, S. Liu, W. Li, Y. Liu, and W. Yang, “Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium,” Opt. Express 17(23), 20756–20761 (2009).
[Crossref] [PubMed]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

2008 (2)

2007 (3)

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

2006 (3)

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

2005 (1)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

2001 (1)

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

1999 (1)

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

1993 (1)

E. G. Gamaly, “The interaction of ultrashort, powerful laser pulses with a solid target: Ion expansion and acceleration with time-dependent ambipolar field,” Phys. Fluids B 5(3), 944–949 (1993).
[Crossref]

1992 (3)

A. Djaoui and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-produced plasma,” J Phys B: Al Mol Opt Phys 25, 2745–2762 (1992).
[Crossref]

W. Rozmus and V. T. Tikhonchuk, “Heating of solid targets by subpicosecond laser pulses,” Phys. Rev. A 46(12), 7810–7814 (1992).
[Crossref] [PubMed]

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

1990 (1)

W. Rozmus and V. T. Tikhonchuk, “Skin effect and interaction of short laser pulses with dense plasmas,” Phys. Rev. A 42(12), 7401–7412 (1990).
[Crossref] [PubMed]

1984 (1)

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

1983 (2)

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

1974 (1)

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[Crossref]

1973 (2)

T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16(5), 722 (1973).
[Crossref]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

1972 (1)

M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett. 29(9), 565–567 (1972).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

1962 (1)

J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5(5), 517–524 (1962).
[Crossref]

Abe, N.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Afshar, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Ahmmed, K. M. T.

K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
[Crossref]

Albright, B. J.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Alexander, D. R.

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
[Crossref]

Anderson, T. P.

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
[Crossref]

Ashby, D. E. T. F.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[Crossref]

Asuka, K.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Audouard, E.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

Ausset, S.

V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
[Crossref]

Beaugiraud, B.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

Benayoun, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

Bezzerides, B.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Bizi-Bandoki, P.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Bounhalli, M.

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Cederquist, H.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Christiansen, J. P.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[Crossref]

Cobble, J. A.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Colombier, J. P.

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Curtis, L. J.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Dai, Q. F.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Daughton, W.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Dawson, J.

J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5(5), 517–524 (1962).
[Crossref]

Dawson, J. M.

T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16(5), 722 (1973).
[Crossref]

Djaoui, A.

A. Djaoui and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-produced plasma,” J Phys B: Al Mol Opt Phys 25, 2745–2762 (1992).
[Crossref]

Dodd, E. S.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

DuBois, D. F.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Fauchet, P. M.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Faure, N.

Feili, D.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Fernández, J. C.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Forsberg, P.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Fujita, M.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Gamaliii, E. G.

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, “The interaction of ultrashort, powerful laser pulses with a solid target: Ion expansion and acceleration with time-dependent ambipolar field,” Phys. Fluids B 5(3), 944–949 (1993).
[Crossref]

Garrelie, F.

Gemini, L.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

Gopal, A. V.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Grambow, C.

K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

Hashida, M.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Huang, Y.

Ikuta, Y.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Inoue, S.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

Johnson, R. P.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Johnston, T. W.

T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16(5), 722 (1973).
[Crossref]

Katto, M.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Kietzig, A.

K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
[Crossref]

Kindel, J. M.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Kisielinski, M.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 5th ed (Wiley, 1976).

Kline, J. L.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

König, K.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Lan, S.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Li, W.

Limpouch, J.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

Liu, H. Y.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Liu, S.

Liu, S. B.

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Liu, Y.

Luo, P. Q.

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Luther-Davies, B.

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

Lysak, T. M.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Malzer, S.

Mannervik, S.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Martinson, I.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Miyaji, G.

Miyasaka, Y.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Miyazaki, K.

Mocek, T.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Montgomery, D. S.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Nakano, H.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Oberman, C.

J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5(5), 517–524 (1962).
[Crossref]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Oliveira, V.

V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
[Crossref]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Parriaux, O.

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

Ramanujam, P. S.

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

Reynaud, S.

Roberts, K. V.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[Crossref]

Rode, A. V.

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

Rose, H. A.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Rose, S. J.

A. Djaoui and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-produced plasma,” J Phys B: Al Mol Opt Phys 25, 2745–2762 (1992).
[Crossref]

Rosenbluth, M. N.

M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett. 29(9), 565–567 (1972).
[Crossref]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rozmus, W.

W. Rozmus and V. T. Tikhonchuk, “Heating of solid targets by subpicosecond laser pulses,” Phys. Rev. A 46(12), 7810–7814 (1992).
[Crossref] [PubMed]

W. Rozmus and V. T. Tikhonchuk, “Skin effect and interaction of short laser pulses with dense plasmas,” Phys. Rev. A 42(12), 7401–7412 (1990).
[Crossref] [PubMed]

Sakabe, S.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Seidel, H.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Shimizu, M.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

Siegman, A. E.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Straub, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Tempel, A.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

Tikhonchuk, V. T.

W. Rozmus and V. T. Tikhonchuk, “Heating of solid targets by subpicosecond laser pulses,” Phys. Rev. A 46(12), 7810–7814 (1992).
[Crossref] [PubMed]

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

W. Rozmus and V. T. Tikhonchuk, “Skin effect and interaction of short laser pulses with dense plasmas,” Phys. Rev. A 42(12), 7401–7412 (1990).
[Crossref] [PubMed]

Tokita, S.

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Tonchev, S.

Trofimov, V. A.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Tsukamoto, M.

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Valette, S.

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vilar, R.

V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
[Crossref]

Vogel, N.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Vu, H. X.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Wang, J.

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

Wang, L. J.

Wang, Y.

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

Wolfframm, D.

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Wu, L. J.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Yang, W.

Yao, J. W.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Yin, L.

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhang, C. Y.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Zhang, W. Y.

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Zhang, Y. H.

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, Q. Z.

Zhou, G.

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

Zhu, S. P.

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Zuhlke, C. A.

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl. Phys. A (2)

M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, and J. Reif, “Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion,” Appl. Phys. A 69, S355–S358 (1999).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Appl. Phys. Lett. (3)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6 μ m,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Appl. Surf. Sci. (6)

C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, “Fundamentals of layered nanoparticle covered pyramidal structuresformed on nickel during femtosecond laser surface interactions,” Appl. Surf. Sci. 283, 648–653 (2013).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256, 61–66 (2009).
[Crossref]

P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci. 257, 5213–5218 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

V. Oliveira, S. Ausset, and R. Vilar, “Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation,” Appl. Surf. Sci. 255, 7556–7560 (2009).
[Crossref]

Comput. Phys. Commun. (1)

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA a one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[Crossref]

J Phys B: Al Mol Opt Phys (1)

A. Djaoui and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-produced plasma,” J Phys B: Al Mol Opt Phys 25, 2745–2762 (1992).
[Crossref]

J. Appl. Phys. (6)

L. Gemini, M. Hashida, M. Shimizu, Y. Miyasaka, S. Inoue, S. Tokita, J. Limpouch, T. Mocek, and S. Sakabe, “Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses,” J. Appl. Phys. 114(19), 194903 (2013).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys. 100(2), 023511 (2006).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Micromachines (1)

K. M. T. Ahmmed, C. Grambow, and A. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5, 1219–1253 (2014).
[Crossref]

Opt Express (1)

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt Express 20, (2)905–911 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Fluids (2)

J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5(5), 517–524 (1962).
[Crossref]

T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16(5), 722 (1973).
[Crossref]

Phys. Fluids B (1)

E. G. Gamaly, “The interaction of ultrashort, powerful laser pulses with a solid target: Ion expansion and acceleration with time-dependent ambipolar field,” Phys. Fluids B 5(3), 944–949 (1993).
[Crossref]

Phys. Plasmas (1)

J. L. Kline, D. S. Montgomery, L. Yin, D. F. DuBois, B. J. Albright, B. Bezzerides, J. A. Cobble, E. S. Dodd, D. F. DuBois, J. C. Fernández, R. P. Johnson, J. M. Kindel, H. A. Rose, H. X. Vu, and W. Daughton, “Different kλD regimes for nonlinear effects on Langmuir waves,” Phys. Plasmas 13(5), 055906 (2006).
[Crossref]

Phys. Rev. A (2)

W. Rozmus and V. T. Tikhonchuk, “Skin effect and interaction of short laser pulses with dense plasmas,” Phys. Rev. A 42(12), 7401–7412 (1990).
[Crossref] [PubMed]

W. Rozmus and V. T. Tikhonchuk, “Heating of solid targets by subpicosecond laser pulses,” Phys. Rev. A 46(12), 7810–7814 (1992).
[Crossref] [PubMed]

Phys. Rev. B (5)

G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Phys. Rev. E (1)

S. B. Liu, P. Q. Luo, Y. H. Zhang, S. P. Zhu, and W. Y. Zhang, “Three-dimensional optical trajectory tracing and energy deposition of a laser beam in a laser-driven fusion,” Phys. Rev. E 63(3), 036703 (2001).
[Crossref]

Phys. Rev. Lett. (1)

M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett. 29(9), 565–567 (1972).
[Crossref]

Phys. Scr. (1)

H. Cederquist, S. Mannervik, M. Kisielinski, P. Forsberg, I. Martinson, L. J. Curtis, and P. S. Ramanujam, “Lifetimes of some excited levels in Cu I and Cu II,” Phys. Scr. T8, 104–106 (1984).
[Crossref]

Sov. J. Quantum Electron. (1)

B. Luther-Davies, E. G. Gamaliĭı, Y. Wang, A. V. Rode, and V. T. Tikhonchuk, “Matter in ultrastrong laser fields,” Sov. J. Quantum Electron. 22(4), 289–325 (1992).
[Crossref]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Vacuum (1)

M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum.  80, 1346–1350 (2006).
[Crossref]

Other (1)

C. Kittel, Introduction to Solid State Physics, 5th ed (Wiley, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic process of STPR driven by fs-laser pulse. (a) Generation of two daughter plasmon waves in EPS. (b) Wave vectors of the two plasmon resonances with matching conditions: k1x =−k2x and k1y =k0. CDS denotes critical density surface.
Fig. 2
Fig. 2 The dispersion curve near the location of 1/4 critical density of plasma due to the change of electron temperature, where μ = 5 × 10−5.
Fig. 3
Fig. 3 Transient electron temperatures calculated for Ti (black lines) and Cu (red lines) targets, using the present theory (dashed lines) and the Med103 code (solid lines).
Fig. 4
Fig. 4 Schematic mechanism of phase-locked STPR wave producing periodic Coulomb ablation. The coordinates , xi−1, xi, xi+1, label the positions of electronegative centers formed by the peaks of wave electrons due to the STPR, and the skin-layer denotes the electropositive surface produced by the bound target-ions. Coulomb ablation occurs only at the peaks of overdense wave electrons due to the electrostatic field between electronegative centers and electropositive surface of target.
Fig. 5
Fig. 5 Schematic illustration of spot matrix for the measurement of time-resolved spectra. (a) SEM image taken on Cu target in fs-laser structuring experiment. (b) Spot matrix for time-resolved spectra on target shown in (a). Spots with different shutter/trigger time are grouped in A, B, C etc.
Fig. 6
Fig. 6 Time-resolved spectra measured on Cu target by irradiation with linearly polarized 60 fs laser pulses with a central wavelength of 800 nm and a fluence per pulse of 0.4 J/cm2.
Fig. 7
Fig. 7 (a) Overview of the experimental setup for periodic ripple experiments using two beams with perpendicular light polarizations. BS is a non-polarizing 50/50% beam splitter, λ/2 is a half wave plate, and TDL is a motorized time-delay-line. (b) Ripples (SEM) produced by pulses with horizontal (➀), vertical (➁), and dual (➂) polarizations. All pictures have a μm scale. 10
Fig. 8
Fig. 8 Ratios of ripple’s SSP to laser wavelength (Λ0) vs laser fluence. (a) Theoretical predictions by Eq. (16) for Cu, Ti, and W targets. (b)–(d) Comparisons of observed (discrete symbols) and prophetic (solid lines) results for Cu, Ti, and W targets. Blue dots are observed results from our experiments.

Tables (1)

Tables Icon

Table 1 Partial data for periodic surface structures reported on some solid targets [21]: ratios of SSP to wavelength (Λ0), energy fluences [J/cm2], pulse durations [fs], and corresponding laser intensity [W/cm2] values.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

n e ( r , z , t ) = n e ( r + r o s , z , t ) n e ( r , z , t ) r o s ( r , t ) n e ( r , z , t ) ,
ω 0 = ω 1 + ω 2 and k 0 = k 1 + k 2 ,
ω 0 2 = ω p e 2 + c 2 k 0 2 for incident light wave
ω 1 , 2 2 = ω p e 2 + 3 v e 2 k 1 , 2 2 for plasmon waves ,
ω 0 2 = ( ω 1 + ω 2 ) 2 = ω 0 2 / 2 + 3 v e 2 ( k 1 2 + k 2 2 ) 2 ω 0 δ + 1 2 ω 0 2 + 12 v e 2 k 1 2 4 ω 0 δ ω 0 2 + 12 v e 2 k 2 2 4 ω 0 δ .
ω 1 ω 2 = 3 ω 0 v e 2 c 2 ( k 1 2 k 2 2 ) k 0 2
( ω 0 ω 1 ) 2 = ω p e 2 + 3 v e 2 ( k 0 k 1 ) 2 .
k = ± k 0 1 + 4 9 c 2 v e 2 δ ω 0 ,
δ = ω ω 0 2 = [ 4 ( 1 + 3 k 2 λ D 2 ) / 5 1 ] ω 0 2 = μ ω 0 2 ,
ω ω 0 = ± 1 2 k k 0 [ 1 + 2 9 ( μ m e c 2 ) / T e ] 1 / 2 ,
λ = λ 0 1 + 1.1 × 10 5 m e c 2 / T e ,
C e n e 0 T e t = α A I 0 exp ( α z ) ,
T e ( z = 0 , t = τ 0 ) 10 24 × F L / ( λ 0 n e 0 ) ,
γ = k v o s 4 [ ( k k 0 ) 2 k 2 k | k k 0 | ] ,
E z ( x ) = ε e k e ( ln n e ) z F L e d s n e λ D ,
Λ = λ 0 1 + 5.62 / T e ,
t a c c = λ D / v i 0 = ω p e 1 v e 0 v i 0 .

Metrics