Abstract

A compact and highly efficient tunable and localized source of propagating surface plasmon-polaritons is proposed based on a protruded metal-insulator-metal (pMIM) structure. The protrusion along a segment of the pMIM forms a nanometer gap and allows a low voltage bias to generate a localized tunneling current. The tunneling current excited plasmons can be fully coupled to the metal-insulator-metal (MIM) waveguiding segment of the pMIM without leakage and propagate a long distance as the gap in the MIM waveguiding segment is much larger than the gap in the protruded segment of the pMIM. Eigenmode and numerical analyses show that by using MIM structures as a benchmark, the pMIM structure enhances the total amount of average power that is transferred from the tunneling current into the excitation of intrinsic eigenmodes of the MIM waveguiding segment. Depending on the magnitude of the applied voltage bias, the pMIM structure supports single, dual and multi modes for a typical Au-SiO2-Au design with a 500 nm-thick SiO2. Among all excited modes, the single mode operation allows highly efficient excitation of long travelling surface plasmon-polaritons (SPPs) of up to 30 µm. The electrical excitation of SPPs using pMIM structures opens up the possibility of integrating plasmon sources into nanoscale optoelectronic circuits to facilitate on-chip data communications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic modulation of surface plasmon modes in magnetoplasmonic metal-insulator-metal cavities

E. Ferreiro-Vila, J. M. García-Martín, A. Cebollada, G. Armelles, and M. U. González
Opt. Express 21(4) 4917-4930 (2013)

Low cross-talk, deep subwavelength plasmonic metal/insulator/metal waveguide intersections with broadband tunability

Tae-Woo Lee, Da Eun Lee, Young Jin Lee, and Soon-Hong Kwon
Photon. Res. 4(6) 272-276 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
    [Crossref] [PubMed]
  2. C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18(10), 10609–10615 (2010).
    [Crossref] [PubMed]
  3. T. Aihara, H. Sakai, A. Takeda, S. Okahisa, M. Fukuhara, M. Ota, Y. Ishii, and M. Fukuda, “Coherent plasmonic interconnection in silicon based electrical circuit,” J. Lightwave Technol. 33(10), 2139–2145 (2015).
    [Crossref]
  4. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
    [Crossref] [PubMed]
  5. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
    [Crossref]
  6. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
    [Crossref] [PubMed]
  7. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
    [Crossref]
  8. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
    [Crossref] [PubMed]
  9. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012).
    [Crossref] [PubMed]
  10. A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
    [Crossref] [PubMed]
  11. J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
    [Crossref]
  12. X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
    [Crossref]
  13. J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
    [Crossref]
  14. R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12(10), 4146–4160 (1975).
    [Crossref]
  15. M. Galperin and A. Nitzan, “Current-induced light emission and light-induced current in molecular-tunneling junctions,” Phys. Rev. Lett. 95(20), 206802 (2005).
    [Crossref] [PubMed]
  16. E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
    [Crossref] [PubMed]
  17. R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling,” Phys. Rev. Lett. 17(22), 1139–1140 (1966).
    [Crossref]
  18. B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
    [Crossref]
  19. D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
    [Crossref]
  20. J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
    [Crossref] [PubMed]
  21. W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
    [Crossref]
  22. T. M. Henrique, C. M. Baltar, K. Drozdowicz-Tomsia, and E. M. Goldys, “Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic dielectric films,” in Plasmonics Principles and Applications, K.Y. Kim ed. (2012), pp.135–156.
  23. I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
    [Crossref]
  24. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
    [Crossref]
  25. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [PubMed]
  26. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [PubMed]
  27. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
    [Crossref]
  28. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
    [Crossref] [PubMed]
  29. D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, 2013)
  30. S. A. Maier, Plasmonics: Fundamenatals and Applications (Springer, 2007)
  31. C. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
    [Crossref]
  32. C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
    [Crossref] [PubMed]
  33. S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
    [Crossref]
  34. S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
    [Crossref]
  35. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  36. L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
    [Crossref] [PubMed]

2016 (1)

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

2015 (3)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

T. Aihara, H. Sakai, A. Takeda, S. Okahisa, M. Fukuhara, M. Ota, Y. Ishii, and M. Fukuda, “Coherent plasmonic interconnection in silicon based electrical circuit,” J. Lightwave Technol. 33(10), 2139–2145 (2015).
[Crossref]

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

2014 (3)

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

2012 (5)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

C. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[Crossref]

L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012).
[Crossref] [PubMed]

2011 (1)

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

2010 (4)

C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18(10), 10609–10615 (2010).
[Crossref] [PubMed]

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

2009 (2)

C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
[Crossref] [PubMed]

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

2008 (1)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

2007 (1)

B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
[Crossref]

2006 (1)

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

2005 (3)

M. Galperin and A. Nitzan, “Current-induced light emission and light-induced current in molecular-tunneling junctions,” Phys. Rev. Lett. 95(20), 206802 (2005).
[Crossref] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

2003 (1)

L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
[Crossref] [PubMed]

2002 (1)

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

2000 (1)

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
[Crossref]

1993 (1)

E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
[Crossref] [PubMed]

1990 (1)

I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
[Crossref]

1976 (1)

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

1975 (1)

R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12(10), 4146–4160 (1975).
[Crossref]

1966 (1)

R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling,” Phys. Rev. Lett. 17(22), 1139–1140 (1966).
[Crossref]

Aihara, T.

Aizpurua, J.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
[Crossref]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Andryieuski, A.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Ang, L. K.

L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
[Crossref] [PubMed]

Apell, S. P.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
[Crossref]

Argondizzo, A.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Babuty, A.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Beaudoin, G.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Beebe, J. M.

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

Benson, O.

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

Berndt, R.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
[Crossref]

Bewley, W. W.

Borghs, G.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Bousseksou, A.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Bussmann, K.

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Cheshnovsky, O.

E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
[Crossref] [PubMed]

Chu, H. S.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Colombelli, R.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Cui, X.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

De Wilde, Y.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Dong, X.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Doyen, I. M.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Du, W.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Duan, X.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Edelman, V. S.

I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
[Crossref]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Fainberg, B. D.

B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
[Crossref]

Fan, S.

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Flaxer, E.

E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
[Crossref] [PubMed]

Flynn, R. A.

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Frisbie, C. D.

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

Fukuda, M.

Fukuhara, M.

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Gadzuk, J. W.

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Galperin, M.

M. Galperin and A. Nitzan, “Current-induced light emission and light-induced current in molecular-tunneling junctions,” Phys. Rev. Lett. 95(20), 206802 (2005).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Garrett-Roe, S.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Gaylord, T. K.

C. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Gumhalter, B.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Haag, R.

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Hohenester, U.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Ishii, Y.

Jaklevic, R. C.

R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12(10), 4146–4160 (1975).
[Crossref]

R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling,” Phys. Rev. Lett. 17(22), 1139–1140 (1966).
[Crossref]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Jouravlev, M.

B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
[Crossref]

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Khaikin, M. S.

I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
[Crossref]

Kim, B. S.

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

Kim, C. S.

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Kim, M.

Kocabas, S. E.

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Koppens, F. H.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Krenn, J.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Kresin, V. V.

C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
[Crossref] [PubMed]

Kubo, A.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Kushmerick, J. G.

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

Kwan, T. J. T.

L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
[Crossref] [PubMed]

Lagae, L.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Lambe, J.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12(10), 4146–4160 (1975).
[Crossref]

R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling,” Phys. Rev. Lett. 17(22), 1139–1140 (1966).
[Crossref]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Lau, Y. Y.

L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
[Crossref] [PubMed]

Lavrinenko, A. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Li, J.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Li, L.

Li, T.

Lin, C.

C. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[Crossref]

Lindle, J. R.

Lipson, M.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, R.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Long, J. P.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

McCarthy, S. L.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Meng, X.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Meyer, J. R.

Miller, D. A. B.

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

Neutens, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Nijhuis, C. A.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Nitzan, A.

B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
[Crossref]

M. Galperin and A. Nitzan, “Current-induced light emission and light-induced current in molecular-tunneling junctions,” Phys. Rev. Lett. 95(20), 206802 (2005).
[Crossref] [PubMed]

Okahisa, S.

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Ota, M.

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Petek, H.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Phua, W. K.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Rampi, M. A.

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Sagnes, I.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Sakai, H.

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Shen, H.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Sipe, J. E.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

Sirtori, C.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Smolyaniov, I. I.

I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
[Crossref]

Sneh, O.

E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
[Crossref] [PubMed]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Sun, S.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

Takeda, A.

Tetienne, J. P.

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Tomczak, N.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Van Dorpe, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Veronis, G.

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

Vurgaftman, I.

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Wang, C.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Wang, L.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012).
[Crossref] [PubMed]

Wang, T.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Wold, D. J.

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

Wu, L.

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Xia, C.

C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
[Crossref] [PubMed]

Xia, W.

Xu, X. G.

Yin, C.

C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
[Crossref] [PubMed]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhang, Y.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Zhao, Z.

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Zhu, S. N.

Zhukovsky, S. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

D. J. Wold, R. Haag, M. A. Rampi, and C. D. Frisbie, “Distance dependence of electron tunneling through self assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions,” J. Phys. Chem. B 106(11), 2813–2816 (2002).
[Crossref]

Light Sci. Appl. (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4(6), e294 (2015).
[Crossref]

Nano Lett. (2)

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[Crossref] [PubMed]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 4069, 3069 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Du, T. Wang, H. S. Chu, L. Wu, R. Liu, S. Sun, W. K. Phua, L. Wang, N. Tomczak, and C. A. Nijhuis, “On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions,” Nat. Photonics 10(4), 274–280 (2016).
[Crossref]

Nat. Photonics Lett. (1)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics Lett. 2(11), 684–687 (2008).
[Crossref]

Nat. Phys. (1)

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Nature (3)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature 480(7376), 193–199 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Lett. A (1)

I. I. Smolyaniov, M. S. Khaikin, and V. S. Edelman, “Light emission from the tunneling junction of the scanning tunneling microscope,” Phys. Lett. A 149(7), 410–412 (1990).
[Crossref]

Phys. Rev. B (7)

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62(3), 2065–2073 (2000).
[Crossref]

R. C. Jaklevic and J. Lambe, “Experimental study of quantum size effects in thin metal films by electron tunneling,” Phys. Rev. B 12(10), 4146–4160 (1975).
[Crossref]

B. D. Fainberg, M. Jouravlev, and A. Nitzan, “Light induced current in molecular tunneling junctions excited with intense shaped pulses,” Phys. Rev. B 76(24), 245329 (2007).
[Crossref]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

C. Lin and T. K. Gaylord, “Multimode metal-insulator-metal waveguides: Analysis and experimental characterization,” Phys. Rev. B 85(8), 085405 (2012).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high k waves in metal dielectric and graphene dielectric multilayers,” Phys. Rev. B 90(15), 155429 (2014).
[Crossref]

S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[Crossref]

Phys. Rev. Lett. (7)

C. Xia, C. Yin, and V. V. Kresin, “Photoabsorption by volume plasmons in metal nanoclusters,” Phys. Rev. Lett. 102(15), 156802 (2009).
[Crossref] [PubMed]

L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New scaling of Child-langmuir law in the quantum regime,” Phys. Rev. Lett. 91(20), 208303 (2003).
[Crossref] [PubMed]

R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunneling,” Phys. Rev. Lett. 17(22), 1139–1140 (1966).
[Crossref]

M. Galperin and A. Nitzan, “Current-induced light emission and light-induced current in molecular-tunneling junctions,” Phys. Rev. Lett. 95(20), 206802 (2005).
[Crossref] [PubMed]

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010).
[Crossref] [PubMed]

J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, “Transition from direct tunneling to field emission in metal-molecule-metal junctions,” Phys. Rev. Lett. 97(2), 026801 (2006).
[Crossref] [PubMed]

Plasmonics (1)

J. Li, H. Shen, X. Dong, Y. Zhang, Z. Zhao, X. Duan, and X. Meng, “Electrical excitation of surface plasmon polaritons using an Au ring grating/GaAs quantum well coupling structure,” Plasmonics 10(1), 145–149 (2015).
[Crossref]

Science (1)

E. Flaxer, O. Sneh, and O. Cheshnovsky, “Molecular light emission induced by inelastic electron tunneling,” Science 262(5142), 2012–2014 (1993).
[Crossref] [PubMed]

Other (3)

T. M. Henrique, C. M. Baltar, K. Drozdowicz-Tomsia, and E. M. Goldys, “Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic dielectric films,” in Plasmonics Principles and Applications, K.Y. Kim ed. (2012), pp.135–156.

D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, 2013)

S. A. Maier, Plasmonics: Fundamenatals and Applications (Springer, 2007)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Protruded Au-SiO2-Au configuration with a tunneling path for propagating plasmon source generation along the MIM waveguiding segment. Dashed line indicates distinction between protruded segment and MIM waveguiding segment. (b) Image plots for real values of Hф captured between 0 to 5µm away from the source at photon energies of (i) 0.6 eV, (ii) 1.1 eV and (iii) 2.0 eV.
Fig. 2
Fig. 2 Efficiency of eigenmode excitation in semi-infinite (a) STM configuration and (b) pMIM configuration. Arrows indicate direction of power flow. Leaky waves are almost negligible in pMIM structures.
Fig. 3
Fig. 3 Eigenmode analysis of intrinsic modes supported by the Au-SiO2-Au MIM waveguiding segment of the pMIM structure calculated in theory. (a) Mode index vs photon energy. (b) Propagation length vs photon energy. Dashed lines indicate cutoff energies of the three regimes. (c) Theoretical mode profile of modes 1, 2 and 3. Mode 1 achieves the longest propagation length of 30 µm at 0.6 eV. Dashed lines indicate different material interfaces.
Fig. 4
Fig. 4 Emission enhancement in excitation of pMIM over MIM structures. (a) Site (red highlighted region) in vicinity of tunnel current measures average power transferred by tunneling current to excited eigenwaves in MIM and pMIM structures. (b) Emission enhancement in pMIM is around two to three orders larger than MIM structures.
Fig. 5
Fig. 5 Field plots of real(Hф) vs propagating distance at photon energies of (a) 0.6 eV, (b) 1.1 eV, (c) 2.0 eV; normalized absolute value of Fourier transformed (Hф) vs mode index for (d) 0.6 eV, (e) 1.1 eV, (f) 2.0 eV; |Hф| across vertical interface for (g) 0.6 eV, (h) 1.1 eV, (i) 2.0 eV. The simulated mode profile closely mirrors the theoretical mode profile, demonstrating the existence of excited eigenmodes in the different regimes and the obvious absence of leaky modes.
Fig. 6
Fig. 6 Cutoff energies of single and dual mode regimes as a function of (a) insulator thickness and (b) insulator permittivity. Thinner insulators with lower permittivity exhibit higher cutoff energies. This means that cutoff energies can be tuned to excite desired modes with the required voltage bias.
Fig. 7
Fig. 7 (a) Calculated static current density profile as a function of applied bias (b) Power transferred from tunneling current in pMIM into the excitation of SPPs as a function of energy for different applied biases in the single mode regime.
Fig. 8
Fig. 8 Eigenmode analysis of intrinsic modes supported by Au-SiO2-Au MIM waveguiding segment of the pMIM calculated in theory and in simulation. (a) Mode index as a function of photon energy for first three modes. (b) Propagation length vs photon energy for first three low-order modes.
Fig. 9
Fig. 9 Normalized Fourier images of Re(Hϕ) as a function of mode index for photon energies of (a) 0.6 eV, (b) 1.1 eV, (c) 2 eV; normalized Fourier images of Im(Hϕ) vs mode index for (d) 0.6 eV, (e) 1.1 eV, (f) 2 eV.
Fig. 10
Fig. 10 Real part of Hϕ across the MIM structure for photon energies of (a) 0.6 eV, (b) 1.1 eV, (c) 2 eV; imaginary part of Hϕ across vertical interface for (d) 0.6 eV, (e) 1.1 eV, (f) 2 eV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P( ω )= 1 2 E( ω ) J * ( ω ) dVol
J( ω )= J 0  ( 1  ħω eV )
H( k r , z 0 )= 1 2π 1 Re( k x ) H( r, z 0 ) e i k r r dr= 1 2π 1 Re( k x ) H 0 ( z 0 ) H 1 1 ( k x r ) e i k r r dr 1+i 2π   H 0 ( z 0 ) k x ( k r k x )

Metrics