Abstract

We focus on investigating the dielectric behaviors and the low-frequency texture transitions in a cholesteric liquid crystal (CLC) doped with graphene nanoplatelets (GNPs) by means of dielectric spectroscopy and measurements of electro-optical responses. The experimental results indicate that incorporating GNPs at a content of 0.5 wt% into the CLC leads to significant suppression of ionic behaviors, as manifested by the reduction in ionic density, diffusivity, and relaxation frequency. In addition, the electro-optical properties of the GNP-doped CLC cell show the lowered operation voltage for the switching from the planar to focal conic state and the absence of the low-frequency focal-conic-to-uniform-lying-helix texture transition. Such results are attributable to the effects of GNPs as nuclei in the CLC medium, giving rise to the repression of the ionic and electrohydrodynamic effects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimized frequency regime for the electrohydrodynamic induction of a uniformly lying helix structure

Yu-Lin Nian, Po-Chang Wu, and Wei Lee
Photon. Res. 4(6) 227-232 (2016)

Influence of methyl red as a dopant on the electrical properties and device performance of liquid crystals

Po-Chang Wu, Chien-Tsung Hou, Yu-Cheng Hsiao, and Wei Lee
Opt. Express 22(25) 31347-31355 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Berreman and T. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
    [Crossref]
  2. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  3. I. P. Ilchishyn, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1484–1493 (2011).
    [Crossref]
  4. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
    [Crossref]
  5. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  6. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
    [Crossref] [PubMed]
  7. O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, “Nanoparticles in liquid crystals and liquid crystalline nanoparticles,” in Liquid Crystals: Topics in Current Chemistry, edited by Carsten Tschierske (Springer-Verlag Berlin Heidelberg, 2012) Vol. 318, pp 331‒393.
  8. W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
    [Crossref]
  9. B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
    [Crossref]
  10. C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
    [Crossref]
  11. H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
    [Crossref]
  12. T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
    [Crossref]
  13. C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
    [Crossref]
  14. S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
    [Crossref]
  15. A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
    [Crossref]
  16. R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
    [Crossref]
  17. O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
    [Crossref]
  18. A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
    [Crossref]
  19. A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).
  20. S.-C. Jeng, S.-J. Hwang, Y.-H. Hung, and S.-C. Chen, “Cholesteric liquid crystal devices with nanoparticle aggregation,” Opt. Express 18(21), 22572–22577 (2010).
    [Crossref] [PubMed]
  21. M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
    [Crossref]
  22. O. Yaroshchuk, S. Tomylko, I. Gvozdovskyy, and R. Yamaguchi, “Cholesteric liquid crystal-carbon nanotube composites with photo-settable reversible and memory electro-optic modes,” Appl. Opt. 52(22), E53–E59 (2013).
    [Crossref] [PubMed]
  23. C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
    [Crossref]
  24. P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
    [Crossref]
  25. A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
    [Crossref]
  26. C. W. Twombly, J. S. Evans, and I. I. Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21(1), 1324–1334 (2013).
    [Crossref] [PubMed]
  27. M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
    [Crossref]
  28. S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
    [Crossref]
  29. R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
    [Crossref]
  30. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [Crossref]
  31. F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
    [Crossref]
  32. Merck datasheets.
  33. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
    [Crossref]
  34. N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
    [Crossref]
  35. A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
    [Crossref]
  36. G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
    [Crossref]
  37. C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
    [Crossref]
  38. Orsay Liquid Crystal Group, “Hydrodynamic instabilities in nematic liquids under ac electric fields,” Phys. Rev. Lett. 25(24), 1642–1643 (1970).
    [Crossref]

2014 (5)

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

2013 (6)

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

C. W. Twombly, J. S. Evans, and I. I. Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21(1), 1324–1334 (2013).
[Crossref] [PubMed]

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

O. Yaroshchuk, S. Tomylko, I. Gvozdovskyy, and R. Yamaguchi, “Cholesteric liquid crystal-carbon nanotube composites with photo-settable reversible and memory electro-optic modes,” Appl. Opt. 52(22), E53–E59 (2013).
[Crossref] [PubMed]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

2012 (4)

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

2011 (6)

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
[Crossref]

I. P. Ilchishyn, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1484–1493 (2011).
[Crossref]

Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

2010 (5)

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

S.-C. Jeng, S.-J. Hwang, Y.-H. Hung, and S.-C. Chen, “Cholesteric liquid crystal devices with nanoparticle aggregation,” Opt. Express 18(21), 22572–22577 (2010).
[Crossref] [PubMed]

A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
[Crossref]

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

2009 (1)

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

2005 (2)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

2004 (1)

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

1997 (1)

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

1994 (1)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

1972 (1)

F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
[Crossref]

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

1970 (2)

Orsay Liquid Crystal Group, “Hydrodynamic instabilities in nematic liquids under ac electric fields,” Phys. Rev. Lett. 25(24), 1642–1643 (1970).
[Crossref]

D. Berreman and T. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Alexe-Ionescu, A. L.

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

Amenitsch, H.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Arnould, H.

F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
[Crossref]

Barbero, G.

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

Basu, R.

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

Berreman, D.

D. Berreman and T. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Biradar, A. M.

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
[Crossref]

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Buchnev, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Chandran, A.

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

Chang, C.-K.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Chen, C. P.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Chen, S.-C.

Chepikov, A. M.

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Chiu, S.-W.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Choudhary, A.

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Ciuchi, F.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Cordoyiannis, G.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

De Luca, A.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Evans, J. S.

Ganguly, P.

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

Gangwar, J.

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

Garvey, A.

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

Georgakilas, V.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Gerritsma, C. J.

F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
[Crossref]

Ghosh, S.

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

Grabar, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Gray, C.

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

Gvozdovskyy, I.

He, G.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

Hirst, L. S.

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

Hsiao, Y.-C.

Hsieh, C.-T.

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

Huang, C.-Y.

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

Huang, S.-M.

C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
[Crossref]

Hung, Y.-H.

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Hwang, S.-J.

Ilchishyn, I. P.

Iljin, A.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Infusino, M.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Ionescu, A.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Ishikawa, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Jeng, S.-C.

Jian, B.-R.

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Joshi, T.

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

Kasian, N. A.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

Kralj, S.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Kumar, A.

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
[Crossref]

Kumar, N.

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Kuo, C.-C.

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

Kuo, H.-L.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Kurochkin, O.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Kutnjak, Z.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Kwon, S. B.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Lavric, M.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Lebovka, N. I.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

Lee, C.-W.

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Lee, K.-C.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Lee, W.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
[Crossref]

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Lelidis, I.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Li, H.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Li, S.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Liao, S.-W.

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

Lien, A.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Lin, T.-H.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Lisetski, L. N.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

I. P. Ilchishyn, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye-doped cholesteric liquid crystal,” Opt. Mater. Express 1(8), 1484–1493 (2011).
[Crossref]

Liu, H.-H.

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Lo, C.-C.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Lu, J.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Malik, A.

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Minenko, S. S.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

Mykytiuk, T. V.

Nesterenko, M. I.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

Ni, S.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Nounesis, G.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Panikarskaya, V. D.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Park, S. K.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Prakash, J.

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

Reznikov, Yu.

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

Rodarte, A. L.

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

Rondelez, F.

F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
[Crossref]

Scaramuzza, N.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Scheffer, T.

D. Berreman and T. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Shih, W.-P.

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Shih, Y.-C.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Silotia, P.

A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
[Crossref]

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Singh, S.

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

Singh, V. K.

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

Smalyukh, I. I.

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Soskin, M. S.

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

Srivastava, A. K.

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

Strangi, G.

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

Su, Y.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Sun, X.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Tan, J.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Tang, C.-Y.

Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
[Crossref]

Tang, K.-T.

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

Tomylko, S.

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Twombly, C. W.

Tzitzios, V.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Usol’tseva, N. V.

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

Wang, C.-T.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Wang, C.-Y.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Wang, W.-Y.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Wu, D.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

Xu, M.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

Yamaguchi, R.

Yang, D.-K.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Yaroshchuk, O.

Zhu, J.

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

Zidanšek, A.

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett. 97(2), 023510 (2010).
[Crossref]

S.-W. Liao, C.-T. Hsieh, C.-C. Kuo, and C.-Y. Huang, “Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions,” Appl. Phys. Lett. 101(16), 161906 (2012).
[Crossref]

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[Crossref]

C.-K. Chang, S.-W. Chiu, H.-L. Kuo, and K.-T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100(4), 043501 (2012).
[Crossref]

P.-C. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

M. Lavrič, V. Tzitzios, S. Kralj, G. Cordoyiannis, I. Lelidis, G. Nounesis, V. Georgakilas, H. Amenitsch, A. Zidanšek, and Z. Kutnjak, “The effect of graphene on liquid-crystalline blue phases,” Appl. Phys. Lett. 103(14), 143116 (2013).
[Crossref]

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99(4), 041108 (2011).
[Crossref]

Carbon (1)

B.-R. Jian, C.-Y. Tang, and W. Lee, “Temperature-dependent electrical properties of dilute suspensions of carbon nanotubes in nematic liquid crystals,” Carbon 49(3), 910–914 (2011).
[Crossref]

Funct. Mater. (1)

A. M. Chepikov, S. S. Minenko, L. N. Lisetski, N. I. Lebovka, N. V. Usol’tseva, and M. S. Soskin, “Dispersions of carbon nanotubes and organomodified clay platelets in cholesteric liquid crystals,” Funct. Mater. 19, 343–347 (2012).

J. Appl. Phys. (3)

A. Malik, A. Choudhary, P. Silotia, A. M. Biradar, V. K. Singh, and N. Kumar, “Effect of graphene oxide nanomaterial in electroclinic liquid crystals,” J. Appl. Phys. 108(12), 124110 (2010).
[Crossref]

A. Kumar, P. Silotia, and A. M. Biradar, “Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals,” J. Appl. Phys. 108(2), 024107 (2010).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

J. Chem. Phys. (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

J. Mater. Chem. C (1)

S. Ni, H. Li, S. Li, J. Zhu, J. Tan, X. Sun, C. P. Chen, G. He, D. Wu, K.-C. Lee, C.-C. Lo, A. Lien, J. Lu, and Y. Su, “Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets,” J. Mater. Chem. C 2(9), 1730–1735 (2014).
[Crossref]

J. Mater. Sci. (1)

M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza, and G. Strangi, “Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix,” J. Mater. Sci. 49(4), 1805–1811 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

O. Kurochkin, O. Buchnev, A. Iljin, S. K. Park, S. B. Kwon, O. Grabar, and Yu. Reznikov, “A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal,” J. Opt. A, Pure Appl. Opt. 11(2), 024003 (2009).
[Crossref]

J. Phys. D Appl. Phys. (2)

T. Joshi, J. Prakash, A. Kumar, J. Gangwar, A. K. Srivastava, S. Singh, and A. M. Biradar, “Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal,” J. Phys. D Appl. Phys. 44(31), 315404 (2011).
[Crossref]

C.-Y. Tang, S.-M. Huang, and W. Lee, “Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles,” J. Phys. D Appl. Phys. 44(35), 355102 (2011).
[Crossref]

Liq. Cryst. (2)

G. Barbero and A. L. Alexe-Ionescu, “Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid,” Liq. Cryst. 32(7), 943–949 (2005).
[Crossref]

N. I. Lebovka, L. N. Lisetski, M. I. Nesterenko, V. D. Panikarskaya, N. A. Kasian, S. S. Minenko, and M. S. Soskin, “Anomalous selective reflection in cholesteryl oleyl carbonate–nematic 5CB mixtures and effects of their doping by single-walled carbon nanotubes,” Liq. Cryst. 40(7), 968–975 (2013).
[Crossref]

Mater. Lett. (1)

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Nat. Mater. (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. L. Rodarte, C. Gray, L. S. Hirst, and S. Ghosh, “Spectral and polarization modulation of quantum dot emission in a one-dimensional liquid crystal photonic cavity,” Phys. Rev. B 85(3), 035430 (2012).
[Crossref]

Phys. Rev. Lett. (3)

D. Berreman and T. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25(9), 577–581 (1970).
[Crossref]

Orsay Liquid Crystal Group, “Hydrodynamic instabilities in nematic liquids under ac electric fields,” Phys. Rev. Lett. 25(24), 1642–1643 (1970).
[Crossref]

F. Rondelez, H. Arnould, and C. J. Gerritsma, “Electrohydrodynamic effects in cholesteric liquid crystals under ac electric fields,” Phys. Rev. Lett. 28(12), 735–737 (1972).
[Crossref]

RSC Adv. (1)

A. Chandran, J. Prakash, P. Ganguly, and A. M. Biradar, “Zirconia nanoparticles/ferroelectric liquid crystal composites for ionic impurity-free memory applications,” RSC Adv. 3(38), 17166–17173 (2013).
[Crossref]

Other (2)

O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, “Nanoparticles in liquid crystals and liquid crystalline nanoparticles,” in Liquid Crystals: Topics in Current Chemistry, edited by Carsten Tschierske (Springer-Verlag Berlin Heidelberg, 2012) Vol. 318, pp 331‒393.

Merck datasheets.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Transmittance spectra of a pristine cell (back curve) and a GNP-doped CLC cell (red curve) in the unperturbed P state. (b) Calculated central wavelength and bandwidth.
Fig. 2
Fig. 2 tan δ spectra of (a) pure and (b) GNP-doped CLCs at various temperatures.
Fig. 3
Fig. 3 Relaxation frequency fR as a function of the absolute temperature T.
Fig. 4
Fig. 4 Deduced (a) ion density n and (b) diffusivity D in undoped and GNP-doped CLC cells.
Fig. 5
Fig. 5 Voltage-dependent transmittance curves of the GNP-doped and pure CLC cells driven by voltages at frequencies of (a) f = 1 kHz and (b) f = 50 Hz. The data were acquired at T = 30 °C.
Fig. 6
Fig. 6 Transmission spectra and optical images of (a) an undoped cell and (b) a GNP-doped CLC cell driven by designated voltages at frequency of 50 Hz.
Fig. 7
Fig. 7 Frequency-dependent transmittance of the (a) undoped and (b) GNP-doped CLC cells under the application of various voltages.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε = n q 2 D 3/2 π 3/2 ε 0 d k B T f 3/2 + ε b
ε = n q 2 D π ε 0 k B T f 1 .

Metrics