Abstract

The Pockels effect in periodically poled lithium niobate made it possible to switch optical signals between two orthogonal optical linear polarizations of the vertical and horizontal polarization states. Based on this effect, we demonstrated polarization-based binary optical logic gates: AND, and OR gates. By combining these basic gates with other polarization-based optical logic gates such as XOR gate accomplished in our previous researches, half-adder and half-subtracter of digital signals with a high extinction ratio of about 10dB have been demonstrated in our experiment, which made it possible to run more complex logical calculus.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation

Jian Wang, Junqiang Sun, and Qizhen Sun
Opt. Express 15(4) 1690-1699 (2007)

All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks

Saurabh Kumar, Alan E. Willner, Deniz Gurkan, Krishnan R. Parameswaran, and Martin M. Fejer
Opt. Express 14(22) 10255-10260 (2006)

All-optical half adder using cross gain modulation in semiconductor optical amplifiers

Sang Hun Kim, Jae Hun Kim, Jae Won Choi, Chang Wan Son, Young Tae Byun, Young Min Jhon, Seok Lee, Deok Ha Woo, and Sun Ho Kim
Opt. Express 14(22) 10693-10698 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [Crossref] [PubMed]
  2. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
    [Crossref]
  3. L. Lei, J. Dong, Y. Yu, S. Tan, and X. Zhang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
    [Crossref]
  4. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
    [Crossref]
  5. J.-Y. Kim, J.-M. Kang, T.-Y. Kim, and S.-K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24(9), 3392–3399 (2006).
    [Crossref]
  6. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
    [Crossref]
  7. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
    [Crossref]
  8. L. Lei, J. Dong, B. Zou, Z. Wu, W. Dong, and X. Zhang, “Expanded all-optical programmable logic array based on multi-input/output canonical logic units,” Opt. Express 22(8), 9959–9970 (2014).
    [Crossref] [PubMed]
  9. M. Xu, Y. Li, T. Zhang, J. Luo, J. Ji, and S. Yang, “The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift,” Opt. Express 22(7), 8349–8366 (2014).
    [Crossref] [PubMed]
  10. Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
    [Crossref]
  11. C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
    [Crossref]
  12. Y. Bian and Q. Gong, “Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures,” Opt. Commun. 313, 27–35 (2014).
    [Crossref]
  13. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [Crossref] [PubMed]
  14. A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).
  15. J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
    [Crossref]
  16. Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
    [Crossref]
  17. Y. A. Zaghloul and A. R. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
    [Crossref] [PubMed]
  18. K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
    [Crossref]
  19. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16(10), 6957–6962 (2008).
    [Crossref] [PubMed]
  20. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
    [Crossref] [PubMed]
  21. J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” arXiv preprint arXiv:1405.6473 (2014).
  22. Q. Rolland, S. Dupont, J. Gazalet, and J.-C. Kastelik, “Acousto-optic couplings in two-dimensional Lithium Niobate phoXonic crystal,” in IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2014), 012006.
    [Crossref]

2014 (3)

2013 (2)

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

2012 (1)

2011 (2)

Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

2010 (1)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

2009 (1)

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

2008 (2)

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16(10), 6957–6962 (2008).
[Crossref] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

2006 (2)

2005 (1)

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

2002 (1)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

2000 (2)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

1999 (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Avramopoulos, H.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Bian, Y.

Y. Bian and Q. Gong, “Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures,” Opt. Commun. 313, 27–35 (2014).
[Crossref]

Bintjas, C.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Burkhard, H.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Byun, Y. T.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Chen, X.

Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
[Crossref]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16(10), 6957–6962 (2008).
[Crossref] [PubMed]

Chen, Y.

Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
[Crossref]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16(10), 6957–6962 (2008).
[Crossref] [PubMed]

Coelho, A.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Costa, M.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Da Silva, M.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Dall’Ara, R.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

De Waardt, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Dong, J.

Dong, W.

Dorren, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Ferreira, A.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Fu, Y.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Gong, Q.

Y. Bian and Q. Gong, “Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures,” Opt. Commun. 313, 27–35 (2014).
[Crossref]

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Guekos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Han, S.-K.

Hansmann, S.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Hatziefremidis, A.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Houbavlis, T.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Hu, X.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Huang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Jhon, Y. M.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Ji, J.

Ju, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Kalyvas, M.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Kang, J.-M.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Khoe, G.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Kim, J. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Kim, J.-Y.

Kim, S. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Kim, T.-Y.

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Lee, S.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Lei, L.

Lenstra, D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Li, Y.

Li, Z.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Liu, K.

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Liu, Y.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Lu, C.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Lu, F.

Luo, J.

Lyra, M.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Occhi, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Saruwatari, M.

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

Schares, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Shi, J.

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Sombra, A.

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Stathopoulos, T.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Sun, J.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Sun, Q.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Tan, S.

Theophilopoulos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Wang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Wang, J.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Woo, D. H.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Wu, Z.

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Xu, M.

Yang, H.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Yang, S.

Yu, Y.

Yue, S.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Zaghloul, A. R.

Zaghloul, Y. A.

Zhang, J.

Zhang, S.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Zhang, T.

Zhang, X.

Zhang, Y.

Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
[Crossref]

Zoiros, K.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Zou, B.

Appl. Phys. Lett. (2)

Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99(16), 161117 (2011).
[Crossref]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Electron. Lett. (2)

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. De Waardt, G. Khoe, H. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photon. Technol. Lett. 20(3), 211–213 (2008).
[Crossref]

J. Lightwave Technol. (2)

Lightwave Technology, Journalism (1)

A. Coelho, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triple-core photonic crystal fiber,” Lightwave Technology, Journalism 31, 731–739 (2013).

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Bian and Q. Gong, “Compact all-optical interferometric logic gates based on one-dimensional metal–insulator–metal structures,” Opt. Commun. 313, 27–35 (2014).
[Crossref]

Opt. Express (4)

Phys. Rev. Lett. (1)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[Crossref] [PubMed]

Plasmonics (1)

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8(2), 749–754 (2013).
[Crossref]

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Other (2)

J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” arXiv preprint arXiv:1405.6473 (2014).

Q. Rolland, S. Dupont, J. Gazalet, and J.-C. Kastelik, “Acousto-optic couplings in two-dimensional Lithium Niobate phoXonic crystal,” in IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2014), 012006.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental schematics for optical polarization-based (a) XOR and XNOR, (b) AND and OR gates. The PBS and polarizer are used to generate and distinguish two orthogonal polarization states, where one state is horizontal, and the other is vertical.
Fig. 2
Fig. 2 The experimental setup of the half-adder and half-subtracter based on the AND and XOR gates realized in PPLN with an incident modulated light as signal 1, and an external electronic field Ey as signal 2.
Fig. 3
Fig. 3 Experimental results for the half-adder and half-subtracter. (a) Transverse external electric field is on. (b) Transverse external electric field is off. For Signal 1, the horizontal and vertical polarizations are defined as logic 0 and 1. For Signal 2, the logic 0 and 1 are achieved when the external electric field are 0 and E. The definition of SUM/DIFF and CARRY is the same with the definition of Signal 1, while the definition of BORROW is contrary to the definition of Signal 1.
Fig. 4
Fig. 4 An on-chip computing system based on LiNbO3, which integrates all necessary signal processing and different structures such as interferometer and whispering gallery resonator etc.

Tables (4)

Tables Icon

Table 1 The polarization and intensity of input and output lights with different applied electric fields

Tables Icon

Table 2 Presentation of signals for XOR, XNOR, AND and OR gates

Tables Icon

Table 3 Experimental results and truth table for XOR, XNOR, AND and OR

Tables Icon

Table 4 Truth tables of SUM, DIFF, CARRY and BORROW for the half-adder and half-subtracter

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ= γ 51 E y ( 1/ n e ) 2 ( 1/ n o ) 2 .

Metrics