Abstract

A polarization multiplexing technique based on phase-shift-induced polarization modulation-to-intensity modulation (PloM-to-IM) convertor and a Mach-Zehnder modulator (MZM) is proposed to generate multi-band signals. Successful transmission of the traditional radio frequency, microwave (MW) and millimeter wave (MMW) signals is simultaneously achieved. Meanwhile, the intensity-constant optical carrier (OC) is reused for upstream 25-km transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional 60-GHz radio-over-fiber systems with downstream OFDMA and wavelength reuse upstream SC-FDMA

Cheng Zhang, Jun Duan, Juhao Li, Weiwei Hu, Hongbin Li, Hequan Wu, and Zhangyuan Chen
Opt. Express 18(18) 19429-19437 (2010)

A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM

Liang Zhang, Xiaofeng Hu, Pan Cao, Tao Wang, and Yikai Su
Opt. Express 19(6) 5196-5201 (2011)

Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation

Beilei Wu, Ming Zhu, Junwen Zhang, Jing Wang, Mu Xu, Fengping Yan, Shuisheng Jian, and Gee-Kung Chang
Opt. Express 23(14) 18323-18329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Xia, A. V. Garcia, and S. K. Yong, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice (Wiley, 2011).
  2. R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
    [Crossref]
  3. L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, “A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM,” Opt. Express 19(6), 5196–5201 (2011).
    [Crossref] [PubMed]
  4. M. Zhu, A. Yi, Y. T. Hsueh, C. Liu, J. Wang, S. C. Shin, J. Yu, and G. K. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, United States, Paper OM3D.4.
    [Crossref]
  5. L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
    [Crossref]
  6. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, and S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett. 38(7), 1167–1169 (2013).
    [Crossref] [PubMed]
  7. T. Shao and J. Yao, “Wavelength reuse in a bidirectional UWB over fiber system,” Opt. Express 21(10), 11921–11927 (2013).
    [Crossref] [PubMed]
  8. M. Morant, J. Prat, and R. Llorente, “Radio-over-fiber optical polarization-multiplexed networks for 3GPP wireless carrier-aggregated MIMO provision,” J. Lightwave Technol. 32(20), 3721–3727 (2014).
    [Crossref]
  9. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]
  10. T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
    [Crossref]
  11. J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
    [Crossref] [PubMed]
  12. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
    [Crossref]
  13. J. Zhang, X. Yuan, M. Lin, J. Tao, Y. Zhang, M. Zhang, and X. Zhang, “Transmission of 112Gb/s PM-RZ-DQPSK over 960 km with adaptive polarization tracking based on power difference”, in Proceedings of ECOC, 2010, Torino, Italy, Paper P2. 09.
    [Crossref]
  14. B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “1-THz bandwidth of 70-krad/s endless optical polarization control”, in proceedings of OFC/NFOEC, 2014, San Francisco, CA, United States, Paper Th2A.1.
  15. M. Yagi, S. Satomi, and S. Ryu, “Field trial of 160-Gbit/s, polarization-division multiplexed RZ-DQPSK transmission system using automatic polarization control”, in proceedings of OFC/NFOEC, 2008, San Diego, CA, United States, Paper OThT7.

2015 (1)

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (1)

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

2011 (1)

2010 (1)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

1993 (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Cao, P.

Chang, G. K.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Chang, Q.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Chen, X.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Daniels, R. C.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Dong, Z.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Fan, S.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Fu, J.

Heath, R. W.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Hsueh, Y.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Hu, X.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, “A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM,” Opt. Express 19(6), 5196–5201 (2011).
[Crossref] [PubMed]

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Li, W.

Li, Z.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Liu, J.

Llorente, R.

Morant, M.

Murdock, J. N.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Pan, S.

Prat, J.

Rappaport, T. S.

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

Shao, T.

Su, T.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
[Crossref] [PubMed]

Su, Y.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, “A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM,” Opt. Express 19(6), 5196–5201 (2011).
[Crossref] [PubMed]

Wang, H.

Wang, J.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Wang, L.

Wang, S.

Wang, T.

Wei, L.

Xu, M.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Yao, J.

Ye, C.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

Zhang, L.

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

L. Zhang, X. Hu, P. Cao, T. Wang, and Y. Su, “A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM,” Opt. Express 19(6), 5196–5201 (2011).
[Crossref] [PubMed]

Zhang, M.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Zheng, J.

Zhu, M.

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

Zhu, N.

IEEE Microw. Mag. (1)

R. C. Daniels, J. N. Murdock, T. S. Rappaport, and R. W. Heath, “60 GHz wireless: up close and personal,” IEEE Microw. Mag. 11(7), 44–50 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Su, J. Zheng, J. Wang, M. Zhu, Z. Dong, M. Xu, M. Zhang, X. Chen, and G. K. Chang, “Multi-service wireless transport over RoF link with colorless BS using PolM-to-IM convertor,” IEEE Photon. Technol. Lett. 27(4), 403–406 (2015).
[Crossref]

L. Zhang, C. Ye, X. Hu, Z. Li, S. Fan, Y. Hsueh, Q. Chang, Y. Su, and G. K. Chang, “Generation of multiband signals in a bidirectional wireless over fiber system with high scalability using heterodyne mixing technique,” IEEE Photon. Technol. Lett. 24(18), 1621–1624 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (2)

Rep. Prog. Phys. (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Other (5)

J. Zhang, X. Yuan, M. Lin, J. Tao, Y. Zhang, M. Zhang, and X. Zhang, “Transmission of 112Gb/s PM-RZ-DQPSK over 960 km with adaptive polarization tracking based on power difference”, in Proceedings of ECOC, 2010, Torino, Italy, Paper P2. 09.
[Crossref]

B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “1-THz bandwidth of 70-krad/s endless optical polarization control”, in proceedings of OFC/NFOEC, 2014, San Francisco, CA, United States, Paper Th2A.1.

M. Yagi, S. Satomi, and S. Ryu, “Field trial of 160-Gbit/s, polarization-division multiplexed RZ-DQPSK transmission system using automatic polarization control”, in proceedings of OFC/NFOEC, 2008, San Diego, CA, United States, Paper OThT7.

P. Xia, A. V. Garcia, and S. K. Yong, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice (Wiley, 2011).

M. Zhu, A. Yi, Y. T. Hsueh, C. Liu, J. Wang, S. C. Shin, J. Yu, and G. K. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, United States, Paper OM3D.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup of 3-band RoF system based on polarization multiplexing and wavelength reuse. LO: local oscillator; RAU: remote access unite; FD: frequency doubler; FQ: Frequency quadrupler; PD: photo detector.
Fig. 2
Fig. 2 Optical spectrum (a) was recorded at point e as α = 0° and φ = π; (b) was recorded at point f as α = 0° and φ = π/2; (c) was recorded at point g as α = 45°, respectively.
Fig. 3
Fig. 3 (a) BER vs. received optical power for Data 1 NRZ signal (operating at 60-GHz) over both fiber and air transmission. (b) EVM vs. received optical power for Data 2 QPSK-OFDM signal (operating at 0.3-GHz) with and without 25-km SSMF transmission. (c) BER vs. received power for Data3 NRZ signal (operating at 15-GHz) at BTB/25-km fiber. (d) BER vs. received power for upstream signal Data4 at BTB/25-km fiber with and without DS signals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E in (t)=2 E 0 exp(j ω 0 t)
E MZM (t)= E 0 exp[j ω 0 (t)]{ k= J k (β)exp[jk( ω m1 t+ π 2 )]cos( k+1 2 π)exp(j π 2 )}
E MZM (t) E 0 exp(j ω 0 t){ J 1 (β)exp(j ω m1 t)+ J 1 (β)exp(j ω m1 t)}
E PM (t)=[ E x E y ]= 2 2 e j w 0 t [ exp(j πV(t) V π ,x ) exp(j πV(t) V π,y +jφ) ]

Metrics