Abstract

This work demonstrates the efficiency and directionality of a method of extracting light from thin-film emissive devices by near-field evanescent waves in plasmonic emitters used in metal composite grating structures. A near-field evanescent wave can induce a surface plasmon wave on the surface of a metal under resonant conditions. Enhancing the near-field evanescent wave generates strong far-field nonlinear optical effects. This effect is highly efficient in some plasmonic emitter structures. Theoretical and experimental results demonstrate that such a metal composite grating structure exhibits good performance, a high coupling ratio, a small coupling angle, enhanced light extraction and a small FWHM. It also improves luminous efficiency, emitter angle, and directivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement and tunability of active plasmonic by multilayer grating coupled emission

Nan-Fu Chiu, Chun Yu, Shou-Yu Nien, Jiun-Haw Lee, Chieh-Hsiung Kuan, Kuang-Chong Wu, Chih-Kung Lee, and Chii-Wann Lin
Opt. Express 15(18) 11608-11615 (2007)

Organic-based plasmonic emitters for sensing applications

Nan-Fu Chiu, Teng-Yi Huang, Chun-Chuan Kuo, Chii-Wann Lin, and Jiun-Haw Lee
Appl. Opt. 52(7) 1383-1388 (2013)

Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures

Hung-Lu Chen, Jyh-Yang Wang, Wen-Hung Chuang, Yean-Woei Kiang, and C. C. Yang
J. Opt. Soc. Am. B 26(5) 923-929 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).
  2. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [Crossref]
  3. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
    [Crossref] [PubMed]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  5. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  7. N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
    [Crossref]
  8. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
    [Crossref]
  9. S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
    [Crossref]
  10. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
    [Crossref]
  11. O. Nicoletti, “Ultrafast plasmonic lasers,” Nat. Mater. 13(11), 998 (2014).
    [Crossref]
  12. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
    [Crossref]
  13. G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  14. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [Crossref]
  15. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
    [Crossref]
  16. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
    [Crossref]
  17. J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
    [Crossref]
  18. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  19. N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
    [Crossref] [PubMed]
  20. N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actu. B, Chem. 197, 35–42 (2014).
  21. N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
    [Crossref]
  22. N.-F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15(18), 11608–11615 (2007).
    [Crossref] [PubMed]
  23. S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
    [Crossref]
  24. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
    [Crossref]
  25. Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
    [Crossref] [PubMed]
  26. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [Crossref] [PubMed]
  27. F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
    [Crossref]
  28. W. H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir-blodgett films,” Anal. Chem. 85(8), 4080–4086 (2013).
    [Crossref] [PubMed]
  29. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
    [Crossref] [PubMed]
  30. F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
    [Crossref] [PubMed]
  31. D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
    [Crossref]
  32. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  33. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  34. A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express 19(7), 6587–6598 (2011).
    [Crossref] [PubMed]
  35. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
    [Crossref] [PubMed]
  36. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express 19(20), 19093–19103 (2011).
    [Crossref] [PubMed]

2014 (3)

O. Nicoletti, “Ultrafast plasmonic lasers,” Nat. Mater. 13(11), 998 (2014).
[Crossref]

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actu. B, Chem. 197, 35–42 (2014).

2013 (6)

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

W. H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir-blodgett films,” Anal. Chem. 85(8), 4080–4086 (2013).
[Crossref] [PubMed]

N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
[Crossref] [PubMed]

2012 (4)

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2011 (3)

2010 (4)

Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

2009 (2)

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

2008 (5)

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

2007 (3)

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

N.-F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15(18), 11608–11615 (2007).
[Crossref] [PubMed]

2006 (1)

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[Crossref]

2004 (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

2002 (1)

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

2000 (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Adam, P.

Alkis, S.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Alù, A.

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[Crossref]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Berini, P.

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Bousseksou, A.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cambie, R.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Chen, Q.

Cheng, C.-J.

N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
[Crossref] [PubMed]

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

Chiu, N.-F.

N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actu. B, Chem. 197, 35–42 (2014).

N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
[Crossref] [PubMed]

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

N.-F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15(18), 11608–11615 (2007).
[Crossref] [PubMed]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Colombelli, R.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Costantini, D.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Cumming, D. R. S.

De Wilde, Y.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Decobert, J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Dostálek, J.

Duan, G.-H.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Feng, J.

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

Greffet, J.-J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Greusard, L.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Gullikson, E. M.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Habert, B.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Hembd, J.

Hillier, A. C.

W. H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir-blodgett films,” Anal. Chem. 85(8), 4080–4086 (2013).
[Crossref] [PubMed]

Ho, Y.-H.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

Homola, J.

Hong, L. K.

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Hori, H.

Hoshino, K.

Hou, C.-H.

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

Huang, T.-Y.

N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actu. B, Chem. 197, 35–42 (2014).

N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
[Crossref] [PubMed]

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kang, H. K.

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kawata, S.

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kintaka, K.

Kiyosue, K.

Knoll, W.

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Kolomenski, A.

Kolomenskii, A.

Kondratenko, V. V.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Kosger, A. C.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Kuan, C. H.

Kuan, C.-H.

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Lee, C. K.

Lee, C.-K.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Lee, J. H.

Lee, J.-H.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Lee, K. H.

Lee, Y.

Lelarge, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Lin, C. W.

Lin, C.-W.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Lin, J.-R.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Maeda, N.

Marquier, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Miyanishi, T.

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Nedyalkov, N. N.

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Nicoletti, O.

O. Nicoletti, “Ultrafast plasmonic lasers,” Nat. Mater. 13(11), 998 (2014).
[Crossref]

Nien, S. Y.

Nien, S.-Y.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

Nishii, J.

Noel, J.

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Obara, G.

Obara, M.

Okamoto, T.

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

Okyay, A. K.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Ortaç, B.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Oruç, F. B.

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Padmore, H. A.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Peng, S.

Pershin, Yu. P.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ponomarenko, A. G.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Rivas, J. G.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Rodríguez, S. R.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Romanato, F.

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Ruffato, G.

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

Schuessler, H.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Simonen, J.

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

Strohaber, J.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tatsu, Y.

Tawa, K.

Teizer, W.

Terakawa, M.

Toma, K.

Toma, M.

Tsai, F.-Y.

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Voronov, D. L.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Wei, M.-K.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Winter, G.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[Crossref]

Wong, C. C.

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Wu, K. C.

Wu, K.-C.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

Yashchuk, V. V.

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Yeh, W. H.

W. H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir-blodgett films,” Anal. Chem. 85(8), 4080–4086 (2013).
[Crossref] [PubMed]

Yu, C.

Yun, Z.

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, X.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Anal. Chem. (1)

W. H. Yeh and A. C. Hillier, “Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer langmuir-blodgett films,” Anal. Chem. 85(8), 4080–4086 (2013).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

N.-F. Chiu, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007).
[Crossref]

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, and J.-H. Lee, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94(10), 103304 (2009).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88(5), 051109 (2006).
[Crossref]

J. Feng, T. Okamoto, J. Simonen, and S. Kawata, “Color-tunable electroluminescence from white organic light-emitting devices through coupled surface plasmons,” Appl. Phys. Lett. 90(8), 081106 (2007).
[Crossref]

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Int. J. Photoenergy (1)

N.-F. Chiu, C.-H. Hou, C.-J. Cheng, and F.-Y. Tsai, “Plasmonic circular nanostructure for enhanced light absorption in organic solar cells,” Int. J. Photoenergy 2013, 502576 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122(38), 9071–9077 (2000).
[Crossref]

J. Opt. (1)

S. Alkis, F. B. Oruç, B. Ortaç, A. C. Koşger, and A. K. Okyay, “A plasmonic enhanced photodetector based on silicon nanocrystals obtained through laser ablation,” J. Opt. 14(12), 125001 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Nat. Mater. (3)

O. Nicoletti, “Ultrafast plasmonic lasers,” Nat. Mater. 13(11), 998 (2014).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Express (8)

N.-F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15(18), 11608–11615 (2007).
[Crossref] [PubMed]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[Crossref] [PubMed]

F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato, and C. C. Wong, “Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control,” Opt. Express 17(14), 12145–12154 (2009).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
[Crossref] [PubMed]

A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer, and H. Schuessler, “Interaction and spectral gaps of surface plasmon modes in gold nano-structures,” Opt. Express 19(7), 6587–6598 (2011).
[Crossref] [PubMed]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express 19(20), 19093–19103 (2011).
[Crossref] [PubMed]

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20(13), 14042–14053 (2012).
[Crossref] [PubMed]

Y. Lee, K. Hoshino, A. Alù, and X. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013).
[Crossref] [PubMed]

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Phys. Rev. B (1)

F. Romanato, L. K. Hong, H. K. Kang, C. C. Wong, Z. Yun, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[Crossref]

Proc. SPIE (1)

D. L. Voronov, R. Cambie, E. M. Gullikson, V. V. Yashchuk, H. A. Padmore, Yu. P. Pershin, A. G. Ponomarenko, and V. V. Kondratenko, “Fabrication and characterization of a new high density Sc/Si multilayer sliced grating,” Proc. SPIE 7077, 707708 (2008).
[Crossref]

Science (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[Crossref] [PubMed]

Sens. Actu. B, Chem. (1)

N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actu. B, Chem. 197, 35–42 (2014).

Sensors (Basel) (1)

N.-F. Chiu, C.-J. Cheng, and T.-Y. Huang, “Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation,” Sensors (Basel) 13(7), 8340–8351 (2013).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simplified GCSPR and SPGCE models. (a) GCSPR mechanisms; the incident wavelength at a specific angle can be coupled to the GCSPR structure. (b) The SPGCE structure is based on Alq3 molecules in the active layer, which provide a non-oriented internal light source that generates SPPs on metal/dielectric interfaces and emits detectable radiation. SEM images of cross-sections of gratings in (c) [Si /Au-film / grating (Au) / Alq3] structure, (d) [Si /Au-film / grating (photo resister, PR) / Alq3] structure. In (d), a 10 nm-thick ultra-thin platinum (Pt) film increases the reflection of secondary electrons, which enhances image contrast.
Fig. 2
Fig. 2 Results of analysis of azimuthal angle and SPR characteristics based on reflectivity spectra. 2(a, b) Au/Au-grating structure. 2(c, d) Au/PR-grating structure. Measurements of the reflectivity spectra for angular interrogation showed that the variable azimuth φ for the λ was 650 nm in Fig. 2(a), 700 nm in Fig. 2(b), 580 nm in Fig. 2(c), and 600 nm in Fig. 2(d), p-polarization.
Fig. 3
Fig. 3 The dispersion of 3D SPGCE structures was measured in relation to the absorption and emission characteristics. These figures are explained by the excitation and extraction of Alq3 molecules in the composite structure and by emissions at different resonance angles. Figures 3(a)-(c) Au/Au-grating/Alq3 structures; Figs. 3(b)-(d) Au/PR-grating/Alq3 structures. Figures 3(a) and 3(b) present the wavelength of the incident light from 450 to 700 nm at which resonant spectral characteristics were obtained at incident angles from 10 to 60 degrees. Figures 3(c) and 3(d) present the behaviors of an SPP at a metal/organic interface that is generated by an SP emission mode. The insets in Figs. 3(c) and (d) present 2D dispersion relation images based on PL emission spectra characteristics.
Fig. 4
Fig. 4 Figures give fitting results and theoretical interpretation. It is angular frequency vs. wave vector for the measured data (block square) and fitting data (blue and green circle), the theoretical dispersion relation on interface surface plasmon dispersion relation Au/Alq3 (hollow pink triangle) and Au/PR (pink triangle) of 1 order, Au/Alq3 (hollow orange triangle) and Au/PR (orange triangle) of −1 order, and the light in vacuum (red line). The data are taken from the sample with a 500 nm pitch. The dependence of the fitting results on dispersion relation is shown in Fig. 4(a) and Fig. 4(b) for Au/Au-grating/Alq3 and Au/PR-grating/Alq3 structure. The fitting results closely correspond to the theoretical dispersion relation.
Fig. 5
Fig. 5 The FDTD simulation results for electric field intensity in SPR propagating modes are shown in the calculated band diagram. Poynting vector distributions in Figs. 5(a)-5(c) correspond to Au/Au-grating/Alq3 structure and those in Figs. 5(d)-5(f) correspond to Au/PR-grating/Alq3 structure. Poynting vector plots reveal that a fraction of the energy of the evanescent field reaches the metal surface, while the remainder is reflected and propagates along the metal surface in the x-y-z axle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin θ R (m) =sin θ i + mλ Λ
k // = k x ± m th 2π Λ = ε eff k 0 sin( θ i )± m th 2π Λ
k sp = k 0 ε m ε eff ε m + ε eff
θ sp =arcsin( λ Λ cos(φ)± ( k sp k 0 ) 2 ( λ Λ sin(φ) ) 2 )

Metrics