Abstract

Optical properties of periodic nanorings with built-in V-shaped nanowedges (NRBV) are investigated theoretically. Tunable ultrahigh order Fano resonances are achieved and they are found to be sensitive to geometric parameters and surrounding dielectric environment of the planar nanostructure. High order Fano resonances can be suppressed or enhanced by adjusting the opening angle of the nanowedge, the size of the nanoring and the aspect ratio of the nanowedge. Moreover, manipulating the offset of the built-in nanowedge, or filling dielectrics asymmetrically can revive suppressed Fano resonances when the V-shaped nanowedge develops into a straight nanorod. Meanwhile, stronger plasmon resonances emerge alternately in the two parts of this planar nanostructure. This periodic plasmonic nanostructure produces ultrahigh order plasmon resonances and stronger electric field enhancement, which have great potential applications in multi-wavelength surface enhanced spectroscopy and biochemical sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects

Wu-Chao Zhai, Tie-Zhu Qiao, Dong-Jin Cai, Wen-Jie Wang, Jing-Dong Chen, Zhi-Hui Chen, and Shao-Ding Liu
Opt. Express 24(24) 27858-27869 (2016)

Narrow dark resonance modes in concentric ring/disk cavities

Yi Zhang, Xianbing Ming, Guifen Liu, Haiming Zhang, and Tianqing Jia
J. Opt. Soc. Am. B 32(9) 1979-1985 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
    [Crossref]
  2. J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, “Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers,” Opt. Express 21(14), 17176–17185 (2013).
    [Crossref] [PubMed]
  3. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [Crossref] [PubMed]
  4. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [Crossref] [PubMed]
  5. J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
    [Crossref]
  6. F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
    [Crossref] [PubMed]
  7. Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
    [Crossref] [PubMed]
  8. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
    [Crossref]
  9. K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
    [PubMed]
  10. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
    [Crossref] [PubMed]
  11. I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
    [Crossref] [PubMed]
  12. M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
    [Crossref] [PubMed]
  13. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  14. S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
    [Crossref] [PubMed]
  15. D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
    [Crossref] [PubMed]
  16. Y. Xu and A. E. Miroshnichenko, “Nonlinear mach-zehnder-Fano interferometer,” Europhys. Lett. 97(4), 44007 (2012).
    [Crossref]
  17. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
    [Crossref] [PubMed]
  18. T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
    [Crossref] [PubMed]
  19. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
    [Crossref] [PubMed]
  20. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  21. A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
    [Crossref]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2008).
  23. J. M. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE, 2014).
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
    [Crossref]
  26. N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
    [Crossref] [PubMed]
  27. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
    [Crossref] [PubMed]
  28. C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
    [Crossref]
  29. N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
    [Crossref]
  30. X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
    [Crossref]
  31. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [Crossref] [PubMed]
  32. F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
    [Crossref]
  33. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  34. Z. D. Zhang, H. Y. Wang, and Z. Y. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide,” Plasmonics 8(2), 797–801 (2013).
    [Crossref]
  35. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  36. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).
  37. B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
    [Crossref] [PubMed]
  38. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
    [Crossref]

2014 (3)

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
[Crossref]

2013 (12)

X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
[Crossref]

Z. D. Zhang, H. Y. Wang, and Z. Y. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, “Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers,” Opt. Express 21(14), 17176–17185 (2013).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

2012 (5)

Y. Xu and A. E. Miroshnichenko, “Nonlinear mach-zehnder-Fano interferometer,” Europhys. Lett. 97(4), 44007 (2012).
[Crossref]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

2011 (7)

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

2010 (1)

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

2009 (1)

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

2008 (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

2007 (1)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

2006 (1)

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

2005 (2)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

2004 (1)

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Alù, A.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Aubard, J.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Bao, J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Barrow, S. J.

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

Bordley, J. A.

N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
[Crossref]

Brennan, C.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Butet, J.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

Cabrini, S.

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

Campbell, D. J.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Carson, J. J. L.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Chen, F. C.

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Chen, J. Y.

X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, C. W.

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Chuang, M. K.

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Cobley, C. M.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Delaporte, P.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Dhuey, S.

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

Di Martino, G.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Dong, J.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, “Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers,” Opt. Express 21(14), 17176–17185 (2013).
[Crossref] [PubMed]

El-Sayed, M. A.

N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
[Crossref]

Fan, J. A.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Félidj, N.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Fuchs, F. B.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Funston, A. M.

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

Gao, F.

Gao, W.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Gheewala, M.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Giessen, H.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Grand, J.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Grojo, D.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Habteyes, T. G.

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Halas, N. J.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Han, Q. Y.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Hartsfield, T.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

He, E. J.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Hentschel, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Hohenau, A.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Hooshmand, N.

N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
[Crossref]

Hsu, C. S.

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Huang, C.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Im, S. H.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Kallepalli, L. N. D.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Kaminska, B.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Krenn, J. R.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Lagae, L.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Le, K. Q.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Leone, S. R.

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

Lévi, G.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Li, G.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

Li, J. N.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, “Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers,” Opt. Express 21(14), 17176–17185 (2013).
[Crossref] [PubMed]

Li, X.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Li, Z. Y.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Lin, S. W.

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Lippitz, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Liu, T.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Liu, T. Z.

Liu, X. X.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Lodewijks, K.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Maier, S. A.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Manoharan, V. N.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Martin, O. J. F.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express 19(22), 22167–22175 (2011).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McLellan, J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Merlen, A.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Miroshnichenko, A. E.

Y. Xu and A. E. Miroshnichenko, “Nonlinear mach-zehnder-Fano interferometer,” Europhys. Lett. 97(4), 44007 (2012).
[Crossref]

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Monticone, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Moran, C.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Moshchalkov, V. V.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Motwani, P.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Mulvaney, P.

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nordlander, P.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Qi, J.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Ruan, Q.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

Sangar, A.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Schuck, P. J.

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Shafiei, F.

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Shih, W. C.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Shvets, G.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Siekkinen, A.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

Skrabalak, S. E.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Sonnefraud, Y.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Sow, I.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

Tam, F.

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

Tinguely, J. C.

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

Torchio, P.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Utéza, O.

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Van Dorpe, P.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Vasefi, F.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Vercruysse, D.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Verellen, N.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Dark and bright localized surface plasmons in nanocrosses,” Opt. Express 19(12), 11034–11051 (2011).
[Crossref] [PubMed]

Wang, C.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Wang, H. Y.

Z. D. Zhang, H. Y. Wang, and Z. Y. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

Wang, J.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
[Crossref]

Wei, X. Z.

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

Wen, X.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

Wiley, B. J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Wolfe, J. C.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Wu, C.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Wu, X.

X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
[Crossref]

Wu, Y. N.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Xia, Y.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Xia, Y. N.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Xiong, Q.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

Xu, H.

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Xu, Y.

Y. Xu and A. E. Miroshnichenko, “Nonlinear mach-zehnder-Fano interferometer,” Europhys. Lett. 97(4), 44007 (2012).
[Crossref]

Yu, Y. F.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, J. B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Zhang, Z. D.

Z. D. Zhang, H. Y. Wang, and Z. Y. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

Zhang, Z. L.

Zhang, Z. Y.

Zheng, H. R.

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

J. N. Li, T. Z. Liu, H. R. Zheng, F. Gao, J. Dong, Z. L. Zhang, and Z. Y. Zhang, “Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers,” Opt. Express 21(14), 17176–17185 (2013).
[Crossref] [PubMed]

ACS Nano (4)

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7(12), 11071–11078 (2013).
[Crossref] [PubMed]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6(9), 8128–8135 (2012).
[Crossref] [PubMed]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6(6), 5130–5137 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nano-hole array structure with improved surface plasmon energy matching characteristics,” Appl. Phys. Lett. 100(043105), 1–4 (2012).

Appl. Surf. Sci. (1)

A. Merlen, A. Sangar, P. Torchio, L. N. D. Kallepalli, D. Grojo, O. Utéza, and P. Delaporte, “Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation,” Appl. Surf. Sci. 284, 545–548 (2013).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4), 262–266 (2008).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Europhys. Lett. (1)

Y. Xu and A. E. Miroshnichenko, “Nonlinear mach-zehnder-Fano interferometer,” Europhys. Lett. 97(4), 44007 (2012).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

I. Sow, J. Grand, G. Lévi, J. Aubard, N. Félidj, J. C. Tinguely, A. Hohenau, and J. R. Krenn, “Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes,” J Phys Chem C Nanomater Interfaces 117(48), 25650–25658 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[Crossref] [PubMed]

F. Tam, C. Moran, and N. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[Crossref]

J. Phys. Chem. Lett. (1)

N. Hooshmand, J. A. Bordley, and M. A. El-Sayed, “Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination,” J. Phys. Chem. Lett. 5(13), 2229–2234 (2014).
[Crossref]

Nano Lett. (8)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, and S. R. Leone, “Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling,” Nano Lett. 11(4), 1819–1825 (2011).
[Crossref] [PubMed]

N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11(2), 391–397 (2011).
[Crossref] [PubMed]

K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13(4), 1847–1851 (2013).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[Crossref] [PubMed]

Nano Today (1)

S. J. Barrow, A. M. Funston, X. Z. Wei, and P. Mulvaney, “DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures,” Nano Today 8(2), 138–167 (2013).
[Crossref]

Nanoscale (2)

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W. C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, “Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices,” Nanoscale 6(3), 1573–1579 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Nat. Nanotechnol. (1)

F. Shafiei, F. Monticone, K. Q. Le, X. X. Liu, T. Hartsfield, A. Alù, and X. Li, “A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance,” Nat. Nanotechnol. 8(2), 95–99 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83(23), 235427 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (4)

X. Wu, J. Wang, and J. Y. Chen, “The effect of aspect ratio of gold nanorods on cell imaging with two-photon excitation,” Plasmonics 8(2), 685–691 (2013).
[Crossref]

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. N. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Z. D. Zhang, H. Y. Wang, and Z. Y. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

J. N. Li, T. Liu, H. R. Zheng, J. Dong, E. J. He, W. Gao, Q. Y. Han, C. Wang, and Y. N. Wu, “Higher order Fano resonances and electric field enhancements in disk-ring Plasmonic nanostructures with double symmetry breaking,” Plasmonics 9(6), 1439–1445 (2014).
[Crossref]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2008).

J. M. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Scheme of the periodic silver NRBV. The incident light is supposed to propagate along the negative direction of z axis and the polarization is normal to the angular bisector of the wedge angle. (b) Schematics of the structural evolution of NRBV. (I)~(V): Manipulate the wedge angle from 60° to 180°. (VI): Adjust the location of the built-in straight nanorod at θ = 180°. (VII): Fill dielectrics asymmetrically into the nanostructure at θ = 180°.
Fig. 2
Fig. 2 Extinction cross sections of periodic (a) nanorings and (b) V-shaped nanowedges (L = 80nm, t = 30nm, d = 20nm) at different wedge angle. The insets present the geometry, incident light condition, simulated electric field and charge density distributions of (a) nanorings and (b) V-shaped nanowedges. The arrows in red in Fig. 2(b) indicate the D mode (850nm) and Q mode (425nm) of FRs at θ = 120°. The colour bars represent the amplitude of |E/E0|, where E is the local electric field near the nanorings and nanowedges, and E0 is the background electric field. The positive and negative charge are represented by red and blue, respectively.
Fig. 3
Fig. 3 Extinction cross sections of periodic NRBV as a function of the wedge angle. The width of the V-shaped wedge d fixed at 20nm and the outer and inner radius of the nanoring (R and r) are fixed at 90nm and 80nm, respectively. Figure 3(a) is the close-up view of shadow zone of Fig. 3(b). The numbers ④, ⑤, ⑥ and ⑦ represent the 4-1, 5-1, 6-2 and 7-2 modes of ring-wedge FRs, respectively.
Fig. 4
Fig. 4 The simulated (a) electric field and (b) charge density distributions of the NRBV at different wedge angle which changes from 60° to 180°. The colour bars represent the amplitude of |E/E0|, where E is the local electric field near the NRBV, and E0 is the background electric field. The positive and negative charge are represented by red and blue, respectively.
Fig. 5
Fig. 5 (a) Extinction cross sections of the periodic NRBV as a function of the inner radius r at θ = 120°. The wall width Δ (Δ = R-r) is fixed at 10nm and the width of the nanowedge d is 20nm. (b) Extinction cross sections of the periodic NRBV as a function of the wall width Δ at θ = 120°. The ratio of r: d: Δ is fixed at 8:2:1. (c) The simulated electric field and charge density distributions of the NRBV at different modes with R = 130nm, r = 120nm and d = 20nm at θ = 120°. The revived 3-1 mode is marked by the frames.
Fig. 6
Fig. 6 (a) Extinction cross sections of the periodic NRBV as a function of the width d at θ = 120°. The inner and outer radii of the ring are fixed at 80nm and 90nm, respectively. (b) The simulated electric field and charge density distributions of the NRBV at different modes with R = 90nm, r = 80nm and d = 10nm at θ = 120°.
Fig. 7
Fig. 7 (a) Extinction cross sections of the periodic NRBV at θ = 180° when moving the straight nanorod upward 10nm, 20nm, 30nm, and 40nm, respectively. Here R = 90nm, r = 80nm and d = 20nm. Numbers 1~7 represent the 1-1 (980nm), 2-1 (750nm), 3-1 (610nm), B-bright 4-1 (520nm), A-bright 4-1 (490nm), B-bright 5-1 (450nm) and A-bright 6-2 (430nm) modes, respectively. (b) The simulated electric field and charge density distributions of corresponding modes marked by the same numbers in Fig. 7(a).
Fig. 8
Fig. 8 (a) Extinction cross sections of the periodic NRBV at θ = 180° when filling the part B with different dielectrics with refractive index of n = 1.00, 1.33, 1.45 and 1.56, respectively. Here R = 90nm, r = 80nm and d = 20nm. Numbers 1~6 represent the 1-1 (990nm), 2-1 (790nm), 3-1 (630nm), A-bright 4-1 (510nm), B-bright 5-1 (470nm), and A-bright 6-2 (440nm) modes, respectively. (b) The simulated electric field and charge density distributions of corresponding modes marked by the same numbers in Fig. 8(a). (c)~(d) The energy shifts (dots in color) of the resonances as a function of the refractive index. The inset shows the FOM of the corresponding mode.
Fig. 9
Fig. 9 The numerical simulated (solid line in black) and fitted (short dash line in red) reflectance of the periodic NRBV at (a) n = 1.00, (b) n = 1.33, (3) n = 1.45, and (d) n = 1.56, respectively. The inset show the characteristic parameters q1, q2, b1 and b2 obtained by Eq. (6).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ sc = 1 I 0 s (n· S sc )dS
σ abs = 1 I 0 V QdV
σ ext = σ sc + σ abs
FOM= 1 fwhm Δω Δn
σ b (ω)= A 2 ( ω 2 ω s 2 ( W s + ω s ) 2 ω s 2 ) 2 +1
σ i ( ω )= ( ω 2 ω i 2 ( W i + ω i ) 2 ω i 2 + q i ) 2 ( ω 2 ω i 2 ( W i + ω i ) 2 ω i 2 +q )+ b i ( ω 2 ω i 2 ( W i + ω i ) 2 ω i 2 ) 2 +1
σ(ω)= σ b (ω) i=1 m σ i (ω)
σ(ω)= σ b (ω) σ 1 (ω) σ 2 (ω)

Metrics