Abstract

Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dynamics of dissipative-soliton-resonance pulses in passively mode-locked fiber lasers

Wenxiong Du, Heping Li, Junwen Li, Zhuang Wang, Pinghe Wang, Zhiyao Zhang, and Yong Liu
Opt. Express 27(6) 8059-8068 (2019)

Vector dissipative soliton resonance in a fiber laser

Zhi-Chao Luo, Qiu-Yi Ning, Hai-Lan Mo, Hu Cui, Jin Liu, Li-Jun Wu, Ai-Ping Luo, and Wen-Cheng Xu
Opt. Express 21(8) 10199-10204 (2013)

Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser

Mengmeng Han, Shumin Zhang, Xingliang Li, Huaxing Zhang, Hong Yang, and Ting Yuan
Opt. Express 23(3) 2424-2435 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
    [Crossref]
  2. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
    [Crossref]
  3. X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
    [Crossref] [PubMed]
  4. X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
    [Crossref] [PubMed]
  5. D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
    [Crossref] [PubMed]
  6. X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37(8), 1334–1336 (2012).
    [Crossref] [PubMed]
  7. L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
    [Crossref] [PubMed]
  8. K. Ozgören, B. Öktem, S. Yılmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
    [Crossref] [PubMed]
  9. N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
    [Crossref] [PubMed]
  10. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [Crossref]
  11. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [Crossref]
  12. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  13. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
    [Crossref]
  14. E. Ding, P. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
    [Crossref] [PubMed]
  15. X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
    [Crossref]
  16. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]
  17. J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
    [Crossref]
  18. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
    [Crossref] [PubMed]
  19. S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
    [Crossref] [PubMed]
  20. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
    [Crossref] [PubMed]
  21. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
    [Crossref] [PubMed]
  22. X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
    [Crossref]
  23. Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996).
    [Crossref] [PubMed]
  24. Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
    [Crossref]
  25. V. E. Zakharov and A. V. Mikhaǐlov, “Polarization domains in nonlinear optics,” JETP Lett. 45(6), 349–352 (1987).
  26. S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182(2-3), 289–293 (1993).
    [Crossref]
  27. M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
    [Crossref] [PubMed]
  28. M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4512–4518 (1994).
    [Crossref] [PubMed]
  29. M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), 3389–3399 (1994).
    [Crossref] [PubMed]
  30. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
    [Crossref]
  31. P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
    [Crossref]
  32. S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
    [Crossref] [PubMed]
  33. F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
    [Crossref] [PubMed]
  34. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80(5), 052302 (2009).
    [Crossref]
  35. H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
    [Crossref]
  36. D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
    [Crossref]
  37. C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
    [Crossref]
  38. C. Lecaplain, P. Grelu, and S. Wabnitz, “Polarization-domain-wall complexes in fiber lasers,” J. Opt. Soc. Am. B 30(1), 211–218 (2013).
    [Crossref]
  39. X. Li, S. Zhang, Y. Meng, and Y. Hao, “Harmonic mode locking counterparts of dark pulse and dark-bright pulse pairs,” Opt. Express 21(7), 8409–8416 (2013).
    [Crossref] [PubMed]
  40. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
    [Crossref] [PubMed]
  41. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
    [Crossref]
  42. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
    [Crossref]
  43. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
    [Crossref]
  44. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
    [Crossref] [PubMed]
  45. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  46. F. Brunet, Y. Taillon, P. Galarneau, and S. LaRochelle, “A simple model describing both self-mode locking and sustained self-pulsing in ytterbium-doped ring fiber lasers,” J. Lightwave Technol. 23(6), 2131–2138 (2005).
    [Crossref]
  47. X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
    [Crossref] [PubMed]

2014 (6)

N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
[Crossref] [PubMed]

L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
[Crossref] [PubMed]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
[Crossref]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (4)

2011 (3)

2010 (4)

2009 (4)

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80(5), 052302 (2009).
[Crossref]

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

2008 (3)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

2005 (1)

2000 (2)

1999 (4)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
[Crossref] [PubMed]

1998 (1)

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[Crossref]

1997 (1)

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
[Crossref]

1996 (1)

1994 (3)

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4512–4518 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), 3389–3399 (1994).
[Crossref] [PubMed]

1993 (1)

S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182(2-3), 289–293 (1993).
[Crossref]

1992 (1)

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

1987 (2)

V. E. Zakharov and A. V. Mikhaǐlov, “Polarization domains in nonlinear optics,” JETP Lett. 45(6), 349–352 (1987).

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
[Crossref] [PubMed]

Akhmediev, N.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Akhmediev, N. N.

Ankiewicz, A.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Bao, Q.

Bergman, K.

Brunet, F.

Cai, Z. R.

Cao, W. J.

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[Crossref] [PubMed]

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
[Crossref]

Chang, W.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Chen, G.

Collings, B. C.

Cundiff, S. T.

Daino, B.

S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182(2-3), 289–293 (1993).
[Crossref]

Ding, E.

Dong, J. L.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
[Crossref]

Duan, L.

Dudley, J. M.

Eken, K.

Feng, H.

Galarneau, P.

García-Ojalvo, J.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
[Crossref]

Grelu, P.

C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
[Crossref]

C. Lecaplain, P. Grelu, and S. Wabnitz, “Polarization-domain-wall complexes in fiber lasers,” J. Opt. Soc. Am. B 30(1), 211–218 (2013).
[Crossref]

E. Ding, P. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[Crossref] [PubMed]

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
[Crossref] [PubMed]

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Gu, C.

Guo, C.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Guo, J.

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

Gutty, F.

Haelterman, M.

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4512–4518 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), 3389–3399 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
[Crossref] [PubMed]

Han, M.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Hao, Y.

Hu, X.

Ilday, F. Ö.

Knox, W. H.

Kockaert, P.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

Kutz, J. N.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

LaRochelle, S.

Lecaplain, C.

C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
[Crossref]

C. Lecaplain, P. Grelu, and S. Wabnitz, “Polarization-domain-wall complexes in fiber lasers,” J. Opt. Soc. Am. B 30(1), 211–218 (2013).
[Crossref]

Li, X.

Liao, J. H.

Lin, H.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Lin, Z. B.

Liu, H.

Liu, L.

Liu, M.

Liu, X.

Loh, K. P.

Lu, H.

Luo, A. P.

Luo, Z. C.

Mao, D.

Matsas, V.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Mei, L.

Meng, Y.

Menyuk, C. R.

Mikhailov, A. V.

V. E. Zakharov and A. V. Mikhaǐlov, “Polarization domains in nonlinear optics,” JETP Lett. 45(6), 349–352 (1987).

Millot, G.

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
[Crossref] [PubMed]

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[Crossref]

Ming, H.

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Ning, Q. Y.

Öktem, B.

Ouyang, D.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Ozgören, K.

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Pitois, S.

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
[Crossref] [PubMed]

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[Crossref]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

Roy, R.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
[Crossref]

Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996).
[Crossref] [PubMed]

Ruan, S.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Shen, D. Y.

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

Sheppard, A. P.

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), 3389–3399 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4512–4518 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
[Crossref] [PubMed]

Song, Y. F.

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

Soto-Crespo, J. M.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17(3), 366–372 (2000).
[Crossref]

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Sun, B.

Taillon, Y.

Tang, D. Y.

Thomson, M. D.

Wabnitz, S.

C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
[Crossref]

C. Lecaplain, P. Grelu, and S. Wabnitz, “Polarization-domain-wall complexes in fiber lasers,” J. Opt. Soc. Am. B 30(1), 211–218 (2013).
[Crossref]

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[Crossref]

S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182(2-3), 289–293 (1993).
[Crossref]

Wang, A.

Wang, G.

Wang, H. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
[Crossref]

Wang, L.

Wang, L. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
[Crossref]

Wang, S. K.

Wang, Y.

Wen, F.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Wen, R.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Williams, Q. L.

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
[Crossref]

Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996).
[Crossref] [PubMed]

Wu, X.

Wu, Y.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Xiang, Y. J.

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

Xu, L.

Xu, S. H.

Xu, W. C.

Yang, J.

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

Yang, Z.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

Yang, Z. M.

Yilmaz, S.

Yu, W.

Zakharov, V. E.

V. E. Zakharov and A. V. Mikhaǐlov, “Polarization domains in nonlinear optics,” JETP Lett. 45(6), 349–352 (1987).

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Zhang, H.

Zhang, S.

Zhang, X.

Zhao, L. M.

Zhao, N.

Zhao, W.

Zheng, X. W.

Appl. Phys. Lett. (1)

P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75(19), 2873–2875 (1999).
[Crossref]

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542–544 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Y. Tang, Y. F. Song, J. Guo, Y. J. Xiang, and D. Y. Shen, “Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0901309 (2014).
[Crossref]

IEEE Photon. J. (1)

J. Yang, C. Guo, S. Ruan, D. Ouyang, H. Lin, Y. Wu, and R. Wen, “Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser,” IEEE Photon. J. 5(3), 1500806 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

JETP Lett. (1)

V. E. Zakharov and A. V. Mikhaǐlov, “Polarization domains in nonlinear optics,” JETP Lett. 45(6), 349–352 (1987).

Laser Phys. (1)

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2012).
[Crossref]

Opt. Commun. (1)

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92(1-3), 61–66 (1992).
[Crossref]

Opt. Express (11)

X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

D. Mao, X. Liu, L. Wang, H. Lu, and H. Feng, “Generation and amplification of high-energy nanosecond pulses in a compact all-fiber laser,” Opt. Express 18(22), 23024–23029 (2010).
[Crossref] [PubMed]

X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
[Crossref] [PubMed]

K. Ozgören, B. Öktem, S. Yılmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[Crossref] [PubMed]

S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
[Crossref] [PubMed]

X. Li, S. Zhang, Y. Meng, and Y. Hao, “Harmonic mode locking counterparts of dark pulse and dark-bright pulse pairs,” Opt. Express 21(7), 8409–8416 (2013).
[Crossref] [PubMed]

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[Crossref] [PubMed]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber,” Opt. Express 22(9), 10906–10913 (2014).
[Crossref] [PubMed]

Opt. Lett. (10)

L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
[Crossref] [PubMed]

X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37(8), 1334–1336 (2012).
[Crossref] [PubMed]

Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
[Crossref] [PubMed]

E. Ding, P. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36(7), 1146–1148 (2011).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
[Crossref] [PubMed]

C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
[Crossref] [PubMed]

F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, and J. M. Dudley, “Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber,” Opt. Lett. 24(20), 1389–1391 (1999).
[Crossref] [PubMed]

Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996).
[Crossref] [PubMed]

Phys. Lett. A (2)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182(2-3), 289–293 (1993).
[Crossref]

Phys. Rev. A (5)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[Crossref]

X. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81(5), 053819 (2010).
[Crossref]

C. Lecaplain, P. Grelu, and S. Wabnitz, “Dynamics of the transition from polarization disorder to antiphase polarization domains in vector fiber lasers,” Phys. Rev. A 89(6), 063812 (2014).
[Crossref]

Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997).
[Crossref]

Phys. Rev. B (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers,” Phys. Rev. B 80(5), 052302 (2009).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (3)

S. Pitois, G. Millot, P. Grelu, and M. Haelterman, “Generation of optical domain-wall structures from modulational instability in a bimodal fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(1), 994–1000 (1999).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(5), 4512–4518 (1994).
[Crossref] [PubMed]

M. Haelterman and A. P. Sheppard, “Vector soliton associated with polarization modulational instability in the normal-dispersion regime,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), 3389–3399 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Supplementary Material (3)

» Media 1: MP4 (14672 KB)     
» Media 2: MP4 (3647 KB)     
» Media 3: MP4 (5409 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic setup of the all-normal-dispersion vector ring oscillator. WDM: wavelength division multiplexer, YDF: Yb-doped fiber, PC: polarization controller, SMF: single mode fiber, PI-ISO: polarization-independent isolator, OC: output coupler, PBS: fiber pigtailed polarization beam splitter.
Fig. 2
Fig. 2 The total output of the laser (upper trace), laser emission along one polarization component x axis (middle trace) and along its orthogonal polarization component y axis (lower trace). (a) is the corresponding spectra of (b). PDW dark pulses at the total/initial laser output and the PDs at the two orthogonal polarization components, (b), (c) and (d), by adjusting PC1.
Fig. 3
Fig. 3 Square-pulse emission: Temporal traces of the initial intensity (upper trace) and the polarization resolved laser emission along the x axis (middle trace) and y axis (lower trace) (a). Optical spectrum (b). RF spectrum with a 3 MHz span and 10 kHz resolution bandwidth. Inset: RF spectrum over a 60 MHz span (c).
Fig. 4
Fig. 4 Evolution of square pulses with changing pump power. (See Media 1) (a). Evolution of square pulses with adjustment of the paddle orientation of PC1 (See Media 2) (b). Oscilloscope traces of 2nd and 3rd order HML square pulses (c). The corresponding spectra (d).
Fig. 5
Fig. 5 The evolution of square pulses with increasing pump power: square pulses of widths 31.0, 36.6, 41.8, 46.8, 52.6, 58.6, 64.3, 70.3, 76.2, 81.6, and 87.8 ns at pump powers of 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, and 128 mW, respectively (a) (See Media 3), and the corresponding spectra(b).
Fig. 6
Fig. 6 The measured average output power and pulse width variation with pump power (a). Peak power and pulse energy vs pump power (b).

Metrics