Abstract

A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors’ knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical parameters of human blood plasma, collagen, and calfskin based on the Stokes–Mueller technique

Hien Thi-Thu Pham, Anh Le-Trang Nguyen, Toi-Van Vo, Khon-Chan Huynh, and Quoc-Hung Phan
Appl. Opt. 57(16) 4353-4359 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
    [Crossref]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [Crossref] [PubMed]
  4. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  5. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
    [Crossref] [PubMed]
  6. S. Jiao, G. Yao, and L. V. Wang, “Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured With Optical Coherence Tomography,” Appl. Opt. 39(34), 6318–6324 (2000).
    [Crossref] [PubMed]
  7. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
    [Crossref] [PubMed]
  8. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
    [Crossref]
  9. X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010).
    [Crossref] [PubMed]
  10. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [Crossref] [PubMed]
  11. T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
    [Crossref] [PubMed]
  12. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011).
    [Crossref] [PubMed]
  13. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. 36(13), 2429–2431 (2011).
    [Crossref] [PubMed]
  14. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition for direction reversal: application to samples measured in reflection and backscattering,” Opt. Express 19(15), 14348–14353 (2011).
    [Crossref] [PubMed]
  15. S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
    [Crossref] [PubMed]
  16. C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
    [Crossref]
  17. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
    [Crossref]
  18. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy, Academic Press, Inc., (1990).
  19. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
    [Crossref] [PubMed]
  20. Z. Michalewicz, Genetic Algorithm + Data structure = Evolution Programs, Springer-Verlag, New York (1994).
  21. H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra,” IEEE/OSA. J. Lightwave Technol. 23(6), 2158–2168 (2005).
    [Crossref]
  22. T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” IEEE/OSA. J. Lightwave Technol. 25(3), 946–951 (2007).
    [Crossref]
  23. Y. C. Liu, Y. L. Lo, and C. C. Liao, “Compensation of Non-Ideal Beam Splitter Polarization Distortion Effect in Michelson Interferometer,” J. Opt. Soc. Am. A (submitted) (2015).
  24. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
    [Crossref] [PubMed]
  25. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
    [Crossref] [PubMed]

2013 (1)

2012 (2)

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

2009 (3)

C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
[Crossref]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
[Crossref]

2007 (1)

T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” IEEE/OSA. J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]

2005 (1)

H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra,” IEEE/OSA. J. Lightwave Technol. 23(6), 2158–2168 (2005).
[Crossref]

2001 (2)

2000 (1)

1999 (2)

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999).
[Crossref] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

1997 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1978 (1)

Arce-Diego, J. L.

Azzam, R. M. A.

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cheng, H. C.

H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra,” IEEE/OSA. J. Lightwave Technol. 23(6), 2158–2168 (2005).
[Crossref]

de Boer, J. F.

Drexler, W.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ghosh, N.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
[Crossref]

Goetzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, X.

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Jiao, S.

Karamata, B.

Kumar, S.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

Lasser, T.

Li, R. K.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

Li, S. H.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

Liao, C. C.

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
[Crossref]

Y. C. Liu, Y. L. Lo, and C. C. Liao, “Compensation of Non-Ideal Beam Splitter Polarization Distortion Effect in Michelson Interferometer,” J. Opt. Soc. Am. A (submitted) (2015).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, Y. C.

Y. C. Liu, Y. L. Lo, and C. C. Liao, “Compensation of Non-Ideal Beam Splitter Polarization Distortion Effect in Michelson Interferometer,” J. Opt. Soc. Am. A (submitted) (2015).

Lo, Y. L.

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
[Crossref]

T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” IEEE/OSA. J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]

H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra,” IEEE/OSA. J. Lightwave Technol. 23(6), 2158–2168 (2005).
[Crossref]

Y. C. Liu, Y. L. Lo, and C. C. Liao, “Compensation of Non-Ideal Beam Splitter Polarization Distortion Effect in Michelson Interferometer,” J. Opt. Soc. Am. A (submitted) (2015).

Milner, T. E.

Nelson, J. S.

Ortega-Quijano, N.

Ossikovski, R.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011).
[Crossref] [PubMed]

Pham, T. T. H.

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Purwar, H.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

van Gemert, M. J. C.

Vitkin, I. A.

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
[Crossref]

Wang, L. V.

Weisel, R. D.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wilson, B. C.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

Wood, M. F. G.

X. Guo, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
[Crossref]

Yao, G.

Yeh, C. Y.

C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
[Crossref]

Yu, T. C.

T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” IEEE/OSA. J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]

Zawadzki, R.

Appl. Opt. (2)

IEEE/OSA. J. Lightwave Technol. (3)

H. C. Cheng and Y. L. Lo, “The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra,” IEEE/OSA. J. Lightwave Technol. 23(6), 2158–2168 (2005).
[Crossref]

T. C. Yu and Y. L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” IEEE/OSA. J. Lightwave Technol. 25(3), 946–951 (2007).
[Crossref]

C. C. Liao, Y. L. Lo, and C. Y. Yeh, “Measurement of Multiple Optical Parameters of Birefrigent Sample Using Polarization-Sensitive Optical Coherence Tomography,” IEEE/OSA. J. Lightwave Technol. 27(5), 483–493 (2009).
[Crossref]

J. Appl. Phys. (1)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: A Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009).
[Crossref]

J. Biomed. Opt. (4)

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

T. T. H. Pham and Y. L. Lo, “Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method,” J. Biomed. Opt. 17(2), 025006 (2012).
[Crossref] [PubMed]

S. Kumar, H. Purwar, R. Ossikovski, I. A. Vitkin, and N. Ghosh, “Comparative study of differential matrix and extended polar decomposition formalisms for polarimetric characterization of complex tissue-like turbid media,” J. Biomed. Opt. 17(10), 105006 (2012).
[Crossref] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,” J. Biomed. Opt. 4(1), 144–151 (1999).
[Crossref] [PubMed]

J. Biophoton. (1)

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2(3), 145–156 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy, Academic Press, Inc., (1990).

Z. Michalewicz, Genetic Algorithm + Data structure = Evolution Programs, Springer-Verlag, New York (1994).

Y. C. Liu, Y. L. Lo, and C. C. Liao, “Compensation of Non-Ideal Beam Splitter Polarization Distortion Effect in Michelson Interferometer,” J. Opt. Soc. Am. A (submitted) (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of proposed Mueller OCT system.
Fig. 2
Fig. 2 Schematic diagram showing measurement model for sample with LB/LD properties in OCT system.
Fig. 3
Fig. 3 Simulation results obtained for α, β, θd and D of hybrid LB/LD sample given theoretical input values of (a) α: 0~180°, β = 60°, θd = 35°, D = 0.5; (b) β: 0~360°, α = 30°, θd = 35°, D = 0.5; (c) θd: 0~180°, α = 30°, β = 60°, D = 0.5; and (d) D: 0~1, α = 30°, β = 60°, θd = 35°.
Fig. 4
Fig. 4 NPBS compensation process for light beams propagating in: (a) measurement arm and (b) reference arm.
Fig. 5
Fig. 5 Experimental results for zero-order quarter-wave plate: (a) LB orientation angle, α; (b) LB phase retardation, β; (c) LD orientation angle, θd; and (d) LD diattenuation, D.
Fig. 6
Fig. 6 Experimental results for defective polarizer: (a) LB orientation angle, α; (b) LB phase retardation, β; (c) LD orientation angle, θd; and (d) LD diattenuation, D.
Fig. 7
Fig. 7 Experimental results obtained by Stokes polarimeter system for optical parameters of defective polarizer: (a) LB orientation angle, α; (b) LB phase retardation, β; (c) LD orientation angle, θd; and (d) LD diattenuation, D.

Tables (3)

Tables Icon

Table 1 Experimental results for zero-order quarter-wave plate

Tables Icon

Table 2 Experimental results for defective polarizer

Tables Icon

Table 3 Experimental results obtained by Stokes polarimeter system for defective polarizer

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I 1,2 I 0 2 R s ( d ) exp[ ( ΔL×2 ln2 l c ) 2 ]cos( 2kΔL )
M=[ M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 ] =[ HH+HV+VH+VV HH+HVVHVV 2PH+2PV M 11 2RH+2RV M 11 HHHV+VHVV HHHVVH+VV 2PH2PV M 21 2RH2RV M 21 2HP+2VP M 11 2HP2VP M 12 4PP2PH2PV M 31 4RP2RH2RV M 31 2HR+2VR M 11 2HR2VR M 12 4PR2PH2PV M 41 4RR2RH2RV M 41 ]
M L,OCT = M R,BS M L,Backward M Mirror M L,Forward M T,BS
M L,OCT =[ O 11 O 12 O 13 O 14 O 21 O 22 O 23 O 24 O 31 O 32 O 33 O 34 O 41 O 42 O 43 O 44 ] O 11 = P 2 { 4[ ( lnP ) 2 + β 2 ]( cosh E 2 cosh F 2 )+ G ( cosh E 2 +cosh F 2 ) } 2 G O 22 = P 2 { 4[ β 2 cos4α+ ( lnP ) 2 cos4 θ d ]( cosh E 2 cosh F 2 )+ G ( cosh E 2 +cosh F 2 ) } 2 G O 33 = P 2 { 4[ β 2 cos4α+ ( lnP ) 2 cos4 θ d ]( cosh E 2 cosh F 2 )+ G ( cosh E 2 +cosh F 2 ) } 2 G O 44 = P 2 { 4[ ( lnP ) 2 + β 2 ]( cosh E 2 cosh F 2 )+ G ( cosh E 2 +cosh F 2 ) } 2 G O 12 = O 21 = 2 P 2 lnP{ E 2 sinh F 2 [ 4 β 2 cos( 4α2 θ d )+( G 4 ( lnP ) 2 )cos(2 θ d ) ]+ F 2 sinh E 2 [ 4 β 2 cos( 4α2 θ d )+( G +4 ( lnP ) 2 )cos(2 θ d ) ] } EFG O 13 = O 31 = 2 P 2 lnP{ E 2 sinh F 2 [ 4 β 2 sin( 4α2 θ d )+( G 4 ( lnP ) 2 )sin(2 θ d ) ]+ F 2 sinh E 2 [ 4 β 2 sin( 4α2 θ d )+( G +4 ( lnP ) 2 )sin(2 θ d ) ] } EFG O 14 = O 41 = 4 P 2 lnPβsin[ 2( α θ d ) ]{ cosh E 2 cosh F 2 } G O 23 = O 32 = 2 P 2 [ β 2 sin(4α)+ ( lnP ) 2 sin(4 θ d ) ][ cosh E 2 cosh F 2 ] G O 24 = O 42 = P 2 { E 2 sinh E 2 [ 4 β 2 sin( 4α2 θ d )+[ G 4 ( lnP ) 2 ]sin(2 θ d ) ]+ F 2 sinh F 2 [ 4 β 2 sin( 4α2 θ d )+[ G +4 ( lnP ) 2 ]sin(2 θ d ) ] } 4βcos[ 2( α θ d ) ] G O 34 = O 43 = P 2 { E 2 sinh E 2 [ 4 β 2 cos( 4α2 θ d )+[ G 4 ( lnP ) 2 ]cos(2 θ d ) ]+ F 2 sinh F 2 [ 4 β 2 cos( 4α2 θ d )+[ G +4 ( lnP ) 2 ]cos(2 θ d ) ] } 4βcos[ 2( α θ d ) ] G
Measurement_Arm=R( θ 2 ) Q 2 R( θ 2 ) H 1 ( β 1 )R( θ 1 ) Q 1 R( θ 1 ) R BS,1 M Mirror =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
Reference_Arm= R( θ 2 ) Q 2 R( θ 2 ) H 1 ( β 1 )R( θ 1 ) Q 1 R( θ 1 ) R( θ 3 ) Q 3 R( θ 3 ) H 2 ( β 2 )R( θ 4 ) Q 4 R( θ 4 ) M Mirror R( θ 4 ) Q 4 R( θ 4 ) H 2 ( β 2 )R( θ 3 ) Q 3 R( θ 3 ) R BS,2 =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
( a ) M Mirror =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
( b ) M R,BS =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
( c ) M T,BS =[ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
( d ) M L,Forward =[ L 11 L 12 L 13 L 14 L 21 L 22 L 23 L 24 L 31 L 32 L 33 L 34 L 41 L 42 L 43 L 44 ]
Set A= ( lnP ) 4 + β 4 +2 ( lnP ) 2 β 2 cos[ 4( α θ d ) ]
B= ( lnP ) 2 β 2 + A
C= ( lnP ) 2 β 2 A
L 11 = P{ [ ( lnP ) 2 + β 2 ]( cosh B 2 cosh C 2 )+ A ( cosh B 2 +cosh C 2 ) } 2 A
L 22 = P{ [ β 2 cos4α+ ( lnP ) 2 cos4 θ d ]( cosh B 2 cosh C 2 )+ A ( cosh B 2 +cosh C 2 ) } 2 A
L 33 = P{ [ β 2 cos4α+ ( lnP ) 2 cos4 θ d ]( cosh B 2 cosh C 2 )+ A ( cosh B 2 +cosh C 2 ) } 2 A
L 44 = P{ [ ( lnP ) 2 + β 2 ]( cosh B 2 cosh C 2 )+ A ( cosh B 2 +cosh C 2 ) } 2 A
L 12 = L 21 = PlnP{ B 2 sinh C 2 [ β 2 cos( 4α2 θ d )+( A ( lnP ) 2 )cos(2 θ d ) ]+ C 2 sinh B 2 [ β 2 cos( 4α2 θ d )+( A + ( lnP ) 2 )cos(2 θ d ) ] } ABC
L 13 = L 31 = PlnP{ B 2 sinh C 2 [ β 2 sin( 4α2 θ d )+( A ( lnP ) 2 )sin(2 θ d ) ]+ C 2 sinh B 2 [ β 2 sin( 4α2 θ d )+( A + ( lnP ) 2 )sin(2 θ d ) ] } ABC
L 14 = L 41 = PlnPβsin[ 2( α θ d ) ]{ cosh B 2 cosh C 2 } A
L 23 = L 32 = P[ β 2 sin(4α)+ ( lnP ) 2 sin(4 θ d ) ][ cosh B 2 cosh C 2 ] 2 A
L 24 = L 42 = P{ B 2 sinh B 2 [ β 2 sin( 4α2 θ d )+[ A ( lnP ) 2 ]sin(2 θ d ) ]+ C 2 sinh C 2 [ β 2 sin( 4α2 θ d )+[ A + ( lnP ) 2 ]sin(2 θ d ) ] } 2βcos[ 2( α θ d ) ] A
L 34 = L 43 = P{ B 2 sinh B 2 [ β 2 cos( 4α2 θ d )+[ A ( lnP ) 2 ]cos(2 θ d ) ]+ C 2 sinh C 2 [ β 2 cos( 4α2 θ d )+[ A + ( lnP ) 2 ]cos(2 θ d ) ] } 2βcos[ 2( α θ d ) ] A
( e ) M L,Backward = M L,Forward (α, θ d )=[ L 11 L 12 L 13 L 14 L 21 L 22 L 23 L 24 L 31 L 32 L 33 L 34 L 41 L 42 L 43 L 44 ]
( f ) Η i ( β i )=[ 1 0 0 0 0 cos(4 β i ) sin(4 β i ) 0 0 sin(4 β i ) cos(4 β i ) 0 0 0 0 1 ]
( g ) R( θ i )=[ 1 0 0 0 0 cos(2 θ i ) sin(2 θ i ) 0 0 sin(2 θ i ) cos(2 θ i ) 0 0 0 0 1 ]
( h ) Q 1,2 =[ 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ]

Metrics