Abstract

We describe and demonstrate an all-optical tunable phase- preserving scheme for multilevel amplitude regeneration based on coherent optical wave mixing using a polarizer for optical star 8-quadrature-amplitude modulation (star-8QAM) and star-16QAM signals with a power ratio of 1:5. Amplitude noise can be efficiently suppressed on both amplitude levels. A regeneration factor of nearly 5 for the higher-amplitude level of star-8QAM and 3 for lower-amplitude level are achieved. The system robustness against nonlinear phase noise originating from the Gordon-Mollenauer effect in a 150 km transmission line is investigated using the proposed amplitude regenerator.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Thomas Richter, Colja Schubert, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(22) 27077-27085 (2014)

Cascaded phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(26) 31729-31734 (2014)

Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers

Mariia Sorokina, Stylianos Sygletos, Andrew D. Ellis, and Sergei Turitsyn
Opt. Express 21(25) 31201-31211 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  2. M. Seimetz, High-Order Modulation for Optical Fiber Transmission, Springer Series in Optical Sciences, (Springer, 2009).
  3. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  4. H. Kim, “Cross-phase-modulation-induced nonlinear phase noise in WDM direct-detection DPSK systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
    [Crossref]
  5. M. Gao, T. Inoue, T. Kurosu, and S. Namiki, “Sideband-assisted phase sensitive amplifiers with high phase sensitivity for efficient phase regeneration,” in 2012 Optical Fiber Communications Conference (Optical Society of America, 2012), paper OW3C.5.
  6. B. Stiller, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase regeneration of a star-8QAM signal in a phase-sensitive amplifier with conjugated pumps,” Opt. Express 22(1), 1028–1035 (2014).
    [Crossref] [PubMed]
  7. M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
    [Crossref]
  8. T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
    [Crossref] [PubMed]
  9. Z. Bakhtiari, J. Wang, X. Wu, J. Yang, S. Nuccio, R. Hellwarth, and A. Willner, “Demonstration of 10-40-Gbaud baud-rate-tunable optical generation of 16-QAM from a QPSK signal using a variable DGD element,” in 2011 Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CThX5.

2014 (2)

2011 (1)

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

2006 (1)

2003 (1)

1990 (1)

Essiambre, R.-J.

Gordon, J. P.

Hierold, M.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Kim, H.

Leuchs, G.

Mollenauer, L. F.

Onishchukov, G.

Richter, T.

Roethlingshoefer, T.

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “All-optical phase-preserving multilevel amplitude regeneration,” Opt. Express 22(22), 27077–27085 (2014).
[Crossref] [PubMed]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Schmauss, B.

Schubert, C.

Sponsel, K.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Stiller, B.

Winzer, P. J.

IEEE Photon. Technol. Lett. (1)

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel phase preserving amplitude regeneration using a single nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (1)

Other (3)

Z. Bakhtiari, J. Wang, X. Wu, J. Yang, S. Nuccio, R. Hellwarth, and A. Willner, “Demonstration of 10-40-Gbaud baud-rate-tunable optical generation of 16-QAM from a QPSK signal using a variable DGD element,” in 2011 Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CThX5.

M. Seimetz, High-Order Modulation for Optical Fiber Transmission, Springer Series in Optical Sciences, (Springer, 2009).

M. Gao, T. Inoue, T. Kurosu, and S. Namiki, “Sideband-assisted phase sensitive amplifiers with high phase sensitivity for efficient phase regeneration,” in 2012 Optical Fiber Communications Conference (Optical Society of America, 2012), paper OW3C.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagram of polarization-based phase-preserving multilevel amplitude regeneration.
Fig. 2
Fig. 2 Concept of multilevel amplitude regeneration: the original signal is phase-modulated based on the self-phase modulation periodic effect and is added coherently to the original signal.
Fig. 3
Fig. 3 Simulation setup. CW: continuous wave; PC: polarization controller; I/Q Mod: In phase/quadrature modulator; AM: amplitude modulator; PBS: polarization beam splitter; HNLF: highly-nonlinear fiber; PBC: polarization beam combiner; BPF: band pass filter; EDFA: erbium doped fiber amplifier; VOA: variable optical attenuator.
Fig. 4
Fig. 4 Back-to-back constellation diagrams with OSNR 20 dB: (a) a noisy star-8QAM signal; (b) regenerated signal after one-stage amplitude regenerator; (c) regenerated signal after two-stage amplitude regenerator. Back-to-back constellation diagrams with OSNR 22 dB: (d) a noisy star-8QAM signal; (e) regenerated signal after one-stage amplitude regenerator; (f) regenerated signal after two-stage amplitude regenerator. Back-to-back constellation diagrams with OSNR 24 dB: (d) a noisy star-8QAM signal; (e) regenerated signal after one-stage amplitude regenerator; (f) regenerated signal after two-stage amplitude regenerator.
Fig. 5
Fig. 5 (a) Regeneration factor vs. OSNR for both amplitude levels of a regenerated star-8QAM signal after a two-stage amplitude regenerator in a back-to-back configuration; (b) Power transfer function of the one-stage polarization-based amplitude regenerator.
Fig. 6
Fig. 6 Back-to-back constellation diagrams with OSNR 22 dB: (a) a noisy star-16QAM signal; (b) regenerated signal after one-stage amplitude regenerator; (c) regenerated signal after two-stage amplitude regenerator. Back-to-back constellation diagrams with OSNR 24 dB: (d) a noisy star-16QAM signal; (e) regenerated signal after one-stage amplitude regenerator; (f) regenerated signal after two-stage amplitude regenerator.
Fig. 7
Fig. 7 Transmitted constellation diagrams of star-8QAM and star-16QAM after 150 km transmission line with/without a pre-regeneration module.
Fig. 8
Fig. 8 (a) Phase noise factor vs. input signal OSNR for both amplitude levels of a transmitted star-8QAM with/without pre-regeneration module at the input of a nonlinear transmission line. (b) Polarizer angle vs. attenuation value embedded in a custom polarization beam combiner (PBC) at BER 10e-4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E s = 1α E in exp(jγL(1α) | E in | 2 )
E w = α E in exp(jγLα | E in | 2 ).
E m χ E s exp(jθ/2) n ^ 1 + E w n ^ 2 .
E p χ E s exp(jθ/2)cos(ϕ)+ E w sin(ϕ).

Metrics