Abstract

Extending the spectral wavelengths of the diode-pumped Nd-doped lasers at 1.3 μm with the KTP crystal in the intracavity Raman configuration is reported for the first time to the best of our knowledge. A systematic comparison is performed to show that a better optical conversion efficiency for the Nd:YAP/KTP Raman laser could be achieved thanks to the higher peak power and linearly polarized radiation at 1341 nm, whereas up to four Stokes emission lines are generated from the Nd:YAG/KTP Raman laser as a result of the fundamental dual-color operation at 1319 and 1338 nm. The maximum Stokes output power of the developed Nd:YAP/KTP Raman laser reaches 1.04 W under an incident pump power of 16 W and a pulse repetition rate of 10 kHz, corresponding to the diode-to-Stokes conversion efficiency as high as 6.5%. The largest pulse energy and highest peak power are evaluated to be up to 104 μJ and 34.7 kW, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power dual-wavelength eye-safe ceramic Nd:YAG/SrWO4 Raman laser operating at 1501 and 1526  nm

Huanian Zhang, Ping Li, Qingpu Wang, Xiaohan Chen, Xingyu Zhang, Jun Chang, and Xutang Tao
Appl. Opt. 53(31) 7189-7194 (2014)

Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power

Zhenhua Cong, Xingyu Zhang, Qingpu Wang, Zhaojun Liu, Xiaohan Chen, Shuzhen Fan, Xiaolei Zhang, Huaijin Zhang, Xutang Tao, and Shutao Li
Opt. Express 18(12) 12111-12118 (2010)

High-power tunable single- and multi-wavelength diode-pumped Nd:YAP laser in the 4F3/24I11/2 transition

Y. S. Tzeng, Y. J. Huang, C. Y. Tang, K. W. Su, W. D. Chen, G. Zhang, and Y. F. Chen
Opt. Express 21(22) 26261-26268 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
    [Crossref]
  2. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42(12), 4996–5005 (1971).
    [Crossref]
  3. A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
    [Crossref]
  4. F. Hanson and P. Poirier, “Multiple-wavelength operation of a diode-pumped Nd:YAlO3 laser,” J. Opt. Soc. Am. B 12(7), 1311–1315 (1995).
    [Crossref]
  5. R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, “Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO,” Opt. Express 8(13), 694–698 (2001).
    [Crossref] [PubMed]
  6. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
    [Crossref]
  7. Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B 29(9), 2352–2356 (2012).
  8. H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).
  9. Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37(24), 5727–5730 (1998).
    [Crossref] [PubMed]
  10. S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
    [Crossref]
  11. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
    [Crossref]
  12. J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
    [Crossref]
  13. Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
    [Crossref]
  14. G. A. Massey, T. M. Loehr, L. J. Willis, and J. C. Johnson, “Raman and electrooptic properties of potaśsium titanate phosphate,” Appl. Opt. 19(24), 4136–4137 (1980).
    [Crossref] [PubMed]
  15. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
    [Crossref]
  16. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  17. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [Crossref]
  18. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  19. G. H. Watson, “Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals,” J. Raman Spectrosc. 22(11), 705–713 (1991).
    [Crossref]
  20. C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
    [Crossref]
  21. Y. F. Chen, “Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling,” Opt. Lett. 30(4), 400–402 (2005).
    [Crossref] [PubMed]
  22. S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
    [Crossref]
  23. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
    [Crossref] [PubMed]
  24. Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
    [Crossref]
  25. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
    [Crossref]
  26. H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
    [Crossref]
  27. H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
    [Crossref] [PubMed]
  28. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
    [Crossref]
  29. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  30. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  31. H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
    [Crossref]
  32. A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44(31), 6653–6659 (2005).
    [Crossref] [PubMed]
  33. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
    [Crossref]
  34. E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
    [Crossref]
  35. L. R. Marshall, J. Kasinski, and R. L. Burnham, “Diode-pumped eye-safe laser source exceeding 1% efficiency,” Opt. Lett. 16(21), 1680–1682 (1991).
    [Crossref] [PubMed]
  36. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
    [Crossref]
  37. H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
    [Crossref]
  38. L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
    [Crossref] [PubMed]
  39. Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
    [Crossref]
  40. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
    [Crossref]
  41. A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
    [Crossref]
  42. R. Frey, A. de Martino, and F. Pradère, “High-efficiency pulse compression with intracavity Raman oscillators,” Opt. Lett. 8(8), 437–439 (1983).
    [Crossref] [PubMed]
  43. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
    [Crossref]

2015 (2)

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

2014 (3)

2013 (1)

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

2012 (2)

Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B 29(9), 2352–2356 (2012).

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

2011 (2)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

2010 (3)

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
[Crossref]

L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
[Crossref] [PubMed]

2009 (2)

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

2008 (3)

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

2007 (2)

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

2006 (1)

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
[Crossref]

2005 (2)

2004 (3)

H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
[Crossref]

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

2003 (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

2001 (2)

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, “Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO,” Opt. Express 8(13), 694–698 (2001).
[Crossref] [PubMed]

1999 (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

1998 (1)

1996 (1)

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

1995 (1)

1991 (2)

G. H. Watson, “Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals,” J. Raman Spectrosc. 22(11), 705–713 (1991).
[Crossref]

L. R. Marshall, J. Kasinski, and R. L. Burnham, “Diode-pumped eye-safe laser source exceeding 1% efficiency,” Opt. Lett. 16(21), 1680–1682 (1991).
[Crossref] [PubMed]

1990 (1)

E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
[Crossref]

1989 (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

1983 (1)

1980 (1)

1979 (1)

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

1971 (1)

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42(12), 4996–5005 (1971).
[Crossref]

1969 (1)

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Ackerhalt, J. R.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Aminov, L. K.

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Andringa, K.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Apanasevich, P. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Bai, S.

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Band, Y. B.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Basiev, T. T.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Bass, M.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Batay, L. E.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Bhalla, A. S.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Burnham, R. L.

Cerný, P.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Chang, J.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Chang, Y. T.

Chen, L.

Chen, W.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Chen, W. D.

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

Chen, X.

Chen, Y. F.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

Y. F. Chen, “Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling,” Opt. Lett. 30(4), 400–402 (2005).
[Crossref] [PubMed]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Y. F. Chen, T. M. Huang, C. L. Wang, and L. J. Lee, “Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser,” Appl. Opt. 37(24), 5727–5730 (1998).
[Crossref] [PubMed]

Chen, Y. S.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Chen, Z. Q.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Comperchio, E.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Cong, Z.

Cui, Q.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Danailov, M. B.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

de Martino, A.

Demidovich, A. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Dong, J.

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Duan, Y.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Duan, Y. M.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

Dyer, P. E.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
[Crossref]

Fan, S.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Fan, S. Z.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Farooq, A.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

Frey, R.

Fu, X.

Gao, S.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
[Crossref]

Gong, M.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
[Crossref]

Grabtchikov, A. S.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Gregor, E.

E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
[Crossref]

Griffiths, A. D.

Guo, A. R.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Guo, L.

Guo, R.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Hait, V. L.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Hanson, F.

Hanson, R. K.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
[Crossref]

He, J. L.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Heller, D. F.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Houwing, A. F. P.

Hu, D.

Huang, C. H.

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Huang, H. T.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Huang, J. Y.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Huang, L. X.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Huang, T. M.

Huang, Y. J.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Huang, Y. P.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

Inagawa, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Ireland, C. L. M.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
[Crossref]

Ivanov, A. O.

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Jeffries, J. B.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
[Crossref]

Jelínková, H.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Jin, G.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Johnson, J. C.

Kaminskii, A. A.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Kasinski, J.

Katiyar, R. S.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Kiefer, W.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Kitaeva, G. Kh.

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[Crossref]

Krasinski, J. S.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

Kuzmin, A. N.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Kuzmin, O. V.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Lai, K. S.

Lan, R.

Lau, E.

Le, X.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Lee, L. J.

Li, A. H.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
[Crossref]

Li, N.

Li, S.

Lim, Y.

Lin, H.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Lisinetskii, V. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Liu, H.

Liu, Z.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Liu, Z. J.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Loehr, T. M.

Lu, Q.

Lü, Y.

Luo, D.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Marshall, L. R.

Massey, G. A.

Mochalov, I. V.

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Monchamp, R. R.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Nieuwsma, D. E.

E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
[Crossref]

Omatsu, T.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Orlovich, V. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Pearce, S.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
[Crossref]

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Poirier, P.

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Pradère, F.

Qin, Z.

Qiu, G.

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Sarkisov, S. E.

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Shao, Z.

Shao, Z. H.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

Shu, X.

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Stultz, R. D.

E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
[Crossref]

Su, K. W.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

Sun, W.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Sun, W. J.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Takeuchi, N.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Tang, D.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Tang, D. Y.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

Tang, G.

Tao, R.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Tao, X.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Tao, X. T.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Tateda, M.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Tsai, S. W.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Tu, C. S.

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

Usuki, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42(12), 4996–5005 (1971).
[Crossref]

Wang, C.

Wang, C. L.

Wang, H.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Wang, H. Y.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

Wang, J.

Wang, Q.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Wang, Q. P.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Wang, W.

Wang, Y.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

Wang, Z.

Watson, G. H.

G. H. Watson, “Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals,” J. Raman Spectrosc. 22(11), 705–713 (1991).
[Crossref]

Weber, M. J.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42(12), 4996–5005 (1971).
[Crossref]

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

Wei, Y.

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Willis, L. J.

Wong, H.

Wu, R. F.

Wushouer, X.

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
[Crossref]

Xia, J.

Xie, W. J.

Xu, C.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Xu, X.

Yang, H.

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Yu, H.

Zhai, P.

Zhang, G.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Zhang, H.

L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, H. J.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Zhang, J.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Zhang, S.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, S. J.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Zhang, S. S.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Zhang, X.

W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
[Crossref] [PubMed]

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, X. Y.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

Zhang, Y. J.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Zhao, Y.

Zhu, H.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Zhu, H. Y.

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

Zhuang, S.

Zhuang, W. Z.

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Zverev, P. G.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (7)

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76(5), 509–514 (2003).
[Crossref]

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8 nm/1338.2 nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90(3–4), 451–454 (2008).
[Crossref]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 102(4), 873–878 (2011).
[Crossref]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89(2–3), 407–416 (2007).
[Crossref]

Q. Cui, X. Shu, X. Le, and X. Zhang, “70-W average-power doubly resonant optical parametric oscillator at 2 μm with single KTP,” Appl. Phys. B 117(2), 639–643 (2014).
[Crossref]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Appl. Phys. Express (1)

Y. Duan, H. Zhu, C. Xu, H. Yang, D. Luo, H. Lin, J. Zhang, and D. Tang, “Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers,” Appl. Phys. Express 6(1), 012701 (2013).
[Crossref]

Appl. Phys. Lett. (2)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, and E. Comperchio, “Czochralski growth and properties of YAlO3 laser crystals,” Appl. Phys. Lett. 15(10), 342–345 (1969).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, and D. F. Heller, “Intracavity Raman lasers,” IEEE J. Quantum Electron. 25(2), 208–213 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Y. Zhu, Y. M. Duan, H. Y. Wang, Z. H. Shao, Y. J. Zhang, G. Zhang, J. Zhang, and D. Y. Tang, “Compact Nd:YAlO3/RbTiOPO4 based intra-cavity optical parametric oscillator emit at 1.65 and 3.13 μm,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1600105 (2015).

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

J. Appl. Phys. (2)

C. S. Tu, A. R. Guo, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[Crossref]

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3,” J. Appl. Phys. 42(12), 4996–5005 (1971).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Raman Spectrosc. (1)

G. H. Watson, “Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals,” J. Raman Spectrosc. 22(11), 705–713 (1991).
[Crossref]

Laser Phys. (1)

S. Bai and J. Dong, “GTR-KTP enhanced stable intracavity frequency doubled Cr,Nd:YAG self-Q-switched green laser,” Laser Phys. 25(2), 025002 (2015).
[Crossref]

Laser Phys. Lett. (5)

J. Y. Huang, W. Z. Zhuang, Y. P. Huang, Y. J. Huang, K. W. Su, and Y. F. Chen, “Improvement of stability and efficiency in diode-pumped passively Q-switched intracavity optical parametric oscillator with a monolithic cavity,” Laser Phys. Lett. 9(7), 485–490 (2012).
[Crossref]

H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, H. Y. Wang, and G. Qiu, “High-power LD end-pumped intra-cavity Nd:YAlO3/KTiOAsO4 optical parametric oscillator emitting at 1562 nm,” Laser Phys. Lett. 7(10), 703–706 (2010).
[Crossref]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, “1120 nm second-Stokes generation in KTiOAsO4,” Laser Phys. Lett. 6(2), 121–124 (2009).
[Crossref]

H. Liu, M. Gong, X. Wushouer, and S. Gao, “Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser,” Laser Phys. Lett. 7(2), 124–129 (2010).
[Crossref]

G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[Crossref]

Meas. Sci. Technol. (1)

H. Li, R. K. Hanson, and J. B. Jeffries, “Diode laser-induced infrared fluorescence of water vapour,” Meas. Sci. Technol. 15(7), 1285–1290 (2004).
[Crossref]

Opt. Commun. (2)

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun. 260(2), 680–686 (2006).
[Crossref]

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun. 194(4–6), 401–407 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Phys. Stat. Solidi (1)

A. A. Kaminskii, S. E. Sarkisov, I. V. Mochalov, L. K. Aminov, and A. O. Ivanov, “Anisotropy of spectroscopic characteristics in the biaxial YAlO3-Nd3+ laser crystals,” Phys. Stat. Solidi 51(2), 509–520 (1979).
[Crossref]

Proc. SPIE (1)

E. Gregor, D. E. Nieuwsma, and R. D. Stultz, “20 Hz eyesafe laser rangefinder for air defense,” Proc. SPIE 1207, 124–135 (1990).
[Crossref]

Prog. Quantum Electron. (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of intracavity KTP-based Raman oscillator pumped by diode-end-pumped actively Q-switched Nd-doped lasers at 1.3 μm.
Fig. 2
Fig. 2 (a) Average output power, (b) pulse energy, (c) pulse duration, and (d) peak power with respect to the pulse repetition rate under an incident pump power of 16 W for the Nd:YAP and Nd:YAG laser at 1.3 μm; Optical spectra for the (e) Nd:YAP and (f) Nd:YAG lasers with the insets showing the measured room-temperature fluorescent profiles.
Fig. 3
Fig. 3 Average output powers of the fundamental and individual Stokes components at a pulse repetition rate of 10 kHz for the (a) Nd:YAP/KTP and (b) Nd:YAG/KTP Raman lasers.
Fig. 4
Fig. 4 Optical spectra in the near infrared region at incident pump powers of (a) 5.5 W, (b) 6.8 W, (c) 11.4 W, and (d) 16 W, as well as the (e) optical spectrum in the visible region, for the Nd:YAP/KTP Raman laser under a pulse repetition rate of 10 kHz; (a’)-(e’) being the corresponding cases for the Nd:YAG/KTP Raman laser.
Fig. 5
Fig. 5 Oscilloscope traces at an incident pump powers of 16 W and a pulse repetition rate of 10 kHz for the Nd:YAP/KTP Raman laser with the time span of (a) 500 μs and (b) 200 ns; and those for the Nd:YAG/KTP Raman laser with the time span of (c) 500 μs and (d) 200 ns.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dn dt = r p cσn ϕ 0 n τ
d ϕ 0 dt = ϕ 0 T r [ 2σn l g 2gh ν 0 c ϕ 1 l R ] ϕ 0 τ 0
d ϕ i dt = ϕ i T r [ 2gh ν i1 c ϕ i1 l R 2gh ν i c ϕ i+1 l R ] ϕ i τ i , for i=1...N1
d ϕ i dt = ϕ i T r [ 2gh ν i1 c ϕ i1 l R ] ϕ i τ i , for i=N
ϕ i1 = T r τ i 1 2gh ν i1 c l R

Metrics