Abstract

An external mirror coupling to a cavity with a two-level atom inside is put forward to control the photon transport along a one-dimensional waveguide. Using a full quantum theory of photon transport in real space, it is shown that the Rabi splittings of the photonic transmission spectra can be controlled by the cavity-mirror couplings; the splittings could still be observed even when the cavity-atom system works in the weak coupling regime, and the transmission probability of the resonant photon can be modulated from 0 to 100%. Additionally, our numerical results show that the appearance of Fano resonance is related to the strengths of the cavity-mirror coupling and the dissipations of the system. An experimental demonstration of the proposal with the current photonic crystal waveguide technique is suggested.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable scattering of a single photon inside a one-dimensional coupled resonator waveguide with second-order nonlinearity

Y. H. Zhou, X. Y. Zhang, Dan Dan Zou, Qi-Cheng Wu, Biao Ling Ye, Y. L. Fang, H. Z. Shen, and Chui-Ping Yang
Opt. Express 28(2) 1249-1260 (2020)

Controllable single-photon transport in a one-dimensional coupled-resonator waveguide coupled to two nanocavities interacting with atoms

Wen-An Li, Xiao-Shi Li, Jin-Jiang Huang, Cai-Mei Pan, Zhi-Feng Chen, and Yuan Chen
J. Opt. Soc. Am. B 34(1) 82-87 (2017)

Quantum photonic transistor controlled by an atom in a Floquet cavity-QED system

Haozhen Li, Han Cai, Jingping Xu, V. V. Yakovlev, Yaping Yang, and Da-Wei Wang
Opt. Express 27(5) 6946-6957 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
    [Crossref] [PubMed]
  2. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
    [Crossref]
  3. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
    [Crossref] [PubMed]
  4. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
    [Crossref]
  5. I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
    [Crossref] [PubMed]
  6. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
    [Crossref] [PubMed]
  7. O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
    [Crossref] [PubMed]
  8. A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
    [Crossref] [PubMed]
  9. H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
    [Crossref] [PubMed]
  10. I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
    [Crossref] [PubMed]
  11. J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98(15), 153003 (2007).
    [Crossref] [PubMed]
  12. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [Crossref]
  13. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [Crossref] [PubMed]
  14. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
    [Crossref] [PubMed]
  15. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30(15), 2001–2003 (2005).
    [Crossref] [PubMed]
  16. L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
    [Crossref] [PubMed]
  17. P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
    [Crossref] [PubMed]
  18. D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
    [Crossref]
  19. L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
    [Crossref]
  20. C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
    [Crossref]
  21. C. H. Yan and L. F. Wei, “Quantum optical switches and beam splitters with surface plasmons,” J. Appl. Phys. 112(5), 054304 (2012).
    [Crossref]
  22. V. Intaraprasonk and S. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
    [Crossref]
  23. M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
    [Crossref] [PubMed]
  24. M. Bradford and J. T. Shen, “Single-photon frequency conversion by exploiting quantum interference,” Phys. Rev. A 85(4), 043814 (2012).
    [Crossref]
  25. K. Koshino, “Single-photon filtering by a cavity quantum electrodynamics system,” Phys. Rev. A 77(2), 023805 (2008).
    [Crossref]
  26. A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
    [Crossref] [PubMed]
  27. J. T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
    [Crossref] [PubMed]
  28. J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
    [Crossref]
  29. Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
    [Crossref]
  30. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [Crossref]
  31. U. Fano, “Effects of configuration interaciton on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  32. K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87(6), 063813 (2013).
    [Crossref]
  33. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
    [Crossref] [PubMed]
  34. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
    [Crossref]
  35. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
    [Crossref]
  36. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
    [Crossref]
  37. T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
    [Crossref]
  38. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
    [Crossref]
  39. X. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/ bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
    [Crossref] [PubMed]
  40. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
    [Crossref] [PubMed]
  41. H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
    [Crossref]

2014 (1)

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

2013 (4)

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87(6), 063813 (2013).
[Crossref]

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

2012 (6)

C. H. Yan and L. F. Wei, “Quantum optical switches and beam splitters with surface plasmons,” J. Appl. Phys. 112(5), 054304 (2012).
[Crossref]

V. Intaraprasonk and S. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
[Crossref] [PubMed]

M. Bradford and J. T. Shen, “Single-photon frequency conversion by exploiting quantum interference,” Phys. Rev. A 85(4), 043814 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

2011 (5)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref] [PubMed]

H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
[Crossref] [PubMed]

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

2010 (4)

D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

2009 (5)

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

X. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/ bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
[Crossref] [PubMed]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[Crossref] [PubMed]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[Crossref]

2008 (4)

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

K. Koshino, “Single-photon filtering by a cavity quantum electrodynamics system,” Phys. Rev. A 77(2), 023805 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

2007 (6)

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98(15), 153003 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

2005 (2)

J. T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30(15), 2001–2003 (2005).
[Crossref] [PubMed]

2004 (2)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaciton on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Abdumalikov, A. A.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Agarwal, G. S.

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87(6), 063813 (2013).
[Crossref]

Agio, M.

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Akahane, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Aljunid, S. A.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Asano, T.

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Astafiev, O.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Astafiev, O. V.

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

Bajcsy, M.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Balet, L.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Baranger, H. U.

H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
[Crossref] [PubMed]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Bradford, M.

M. Bradford and J. T. Shen, “Single-photon frequency conversion by exploiting quantum interference,” Phys. Rev. A 85(4), 043814 (2012).
[Crossref]

M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
[Crossref] [PubMed]

Bushev, P.

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Carmele, A.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Chen, R. T.

Chen, X.

Chen, Y. S.

Chen, Z.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Chng, B.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Delsing, P.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Edwards, E.

Ellis, B.

Englund, D.

Fan, S.

V. Intaraprasonk and S. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98(15), 153003 (2007).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30(15), 2001–2003 (2005).
[Crossref] [PubMed]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaciton on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Fiore, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Francardi, M.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Gauthier, D. J.

H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
[Crossref] [PubMed]

Gerardino, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Gerhardt, I.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Gong, Q.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Gong, Z. R.

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Götzinger, S.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

Harris, J. S.

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Hoi, I.-C.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Huang, R.-S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Huber, F.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Hwang, J.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Inomata, K.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Intaraprasonk, V.

V. Intaraprasonk and S. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

Jia, W. Z.

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

Jiang, W.

Johansson, G.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Kabuss, J.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

Kiravittaya, S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Knorr, A.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

Kojima, K.

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

Kojima, T.

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

Kolchin, P.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref] [PubMed]

Koshino, K.

K. Koshino, “Single-photon filtering by a cavity quantum electrodynamics system,” Phys. Rev. A 77(2), 023805 (2008).
[Crossref]

Kumar, S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Kurtsiefer, C.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Lee, H. S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Lettow, R.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

Li, H.-K.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Li, L. H.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Li, Y.

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

Liu, Y.-C.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Liu, Y.-x.

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Luan, X.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Majumdar, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Maslennikov, G.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Miller, D. A. B.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Nakamura, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

Nakamura, Y.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Noda, S.

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Nori, F.

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Obi, K. C.

M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
[Crossref] [PubMed]

Oulton, R. F.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref] [PubMed]

Palomaki, T.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Pashkin, Y. A.

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Paskin, Y. A.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Peropadre, B.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Pfab, R.

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Plumhof, J. D.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Pototschnig, M.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

Qu, K.

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87(6), 063813 (2013).
[Crossref]

Rastelli, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Reitzenstein, S.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

Renn, A.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Sandoghdar, V.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Sarmiento, T.

Sato, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

Schmidt, O. G.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Schulze, F.

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Shen, J. T.

M. Bradford and J. T. Shen, “Single-photon frequency conversion by exploiting quantum interference,” Phys. Rev. A 85(4), 043814 (2012).
[Crossref]

M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
[Crossref] [PubMed]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[Crossref]

J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98(15), 153003 (2007).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30(15), 2001–2003 (2005).
[Crossref] [PubMed]

Song, B. S.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Sørensen, A. S.

D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Sun, C. P.

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Takahashi, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

Tanaka, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Tey, M. K.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Tsai, J. S.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

Upham, J.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Vuckovic, J.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[Crossref] [PubMed]

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

Wei, L. F.

C. H. Yan and L. F. Wei, “Quantum optical switches and beam splitters with surface plasmons,” J. Appl. Phys. 112(5), 054304 (2012).
[Crossref]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

Wilson, C. M.

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

Witthaut, D.

D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

Wong, C. W.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Xiao, Y.-F.

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Yamamoto, T.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Yan, C. H.

C. H. Yan and L. F. Wei, “Quantum optical switches and beam splitters with surface plasmons,” J. Appl. Phys. 112(5), 054304 (2012).
[Crossref]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

Yang, L.-P.

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Zagoskin, A. M.

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Zhang, X.

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref] [PubMed]

Zhao, Y.

Zheng, H.

H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Zumofen, G.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85(20), 4591–4593 (2004).
[Crossref]

T. Kojima, K. Kojima, T. Asano, and S. Noda, “Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging,” Appl. Phys. Lett. 102(1), 011110 (2013).
[Crossref]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[Crossref]

J. Appl. Phys. (1)

C. H. Yan and L. F. Wei, “Quantum optical switches and beam splitters with surface plasmons,” J. Appl. Phys. 112(5), 054304 (2012).
[Crossref]

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6, 56–61 (2012).
[Crossref]

Nat. Phys. (3)

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[Crossref]

Nature (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004).
[Crossref] [PubMed]

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460, 76–80 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

D. Witthaut and A. S. Sørensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaciton on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. A (6)

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87(6), 063813 (2013).
[Crossref]

V. Intaraprasonk and S. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79(2), 023837 (2009).
[Crossref]

M. Bradford and J. T. Shen, “Single-photon frequency conversion by exploiting quantum interference,” Phys. Rev. A 85(4), 043814 (2012).
[Crossref]

K. Koshino, “Single-photon filtering by a cavity quantum electrodynamics system,” Phys. Rev. A 77(2), 023805 (2008).
[Crossref]

C. H. Yan, L. F. Wei, W. Z. Jia, and J. T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84(4), 045801 (2011).
[Crossref]

Phys. Rev. B (2)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B 84(24), 245309 (2011).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Phys. Rev. Lett. (14)

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, “Strong extinction of a laser beam by a single molecule,” Phys. Rev. Lett. 98(3), 033601 (2007).
[Crossref] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[Crossref] [PubMed]

O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104(18), 183603 (2010).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

H. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107(22), 223601 (2011).
[Crossref] [PubMed]

I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, “Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett. 107(7), 073601 (2011).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98(15), 153003 (2007).
[Crossref] [PubMed]

Y.-C. Liu, X. Luan, H.-K. Li, Q. Gong, C. W. Wong, and Y.-F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

M. Bradford, K. C. Obi, and J. T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108(10), 103902 (2012).
[Crossref] [PubMed]

A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr, “Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics,” Phys. Rev. Lett. 110(1), 013601 (2013).
[Crossref] [PubMed]

J. T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[Crossref] [PubMed]

L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111(10), 103604 (2013).
[Crossref]

L. Zhou, Z. R. Gong, Y.-x. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101(10), 100501 (2008).
[Crossref] [PubMed]

P. Kolchin, R. F. Oulton, and X. Zhang, “Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level,” Phys. Rev. Lett. 106(11), 113601 (2011).
[Crossref] [PubMed]

Science (1)

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic configuration for controlling photonic transport by cavity-mirror coupling. A microcavity interacting with a TLA is coupled to a single-mode waveguide, and a perfect reflection mirror placed in a distance of D is utilized to produce the external mode beside the cavity mode. The TLA in the cavity is assumed initially at its ground state |g〉.
Fig. 2
Fig. 2 Transporting properties of photons influenced by cavity-mirror coupling (with ω c = ω m = Ω, 1 τ c = 1 τ m = 1 τ a = 0, and Γ = V2/Vg = 0.09Ω). The cavity-TLA coupling is in the weak regime (g = 0.001Ω ≪ Γ). It is shown that the transmission probabilities of the resonant photon (T(Ω)) can be controlled from 0 to 1 by enhancing the coupling strength Vm. Especially, Rabi splitting is found, regardless of the cavity-TLA in the weak coupling regime. The inset shows that, for the strong coupling case (g = 0.3Ω and Vm = 0.4Ω), the perfect transmission (T = 1) is not located at ω = Ω but stabilizes in a proper frequency range. The Rabi-splitting dips are clearly found at Ω ± g 2 + V m 2.
Fig. 3
Fig. 3 Transmission spectra of detuned photons with g = 0.03Ω. (a) Without the external mode. (b)–(d) With the external mode driving the cavity. Here, Fano resonances are obviously found. (e) Cavity-TLA is detuned (ωc ≠ Ω). It is clearly shown that the cavity-TLA detuning suppresses the Rabi-splitting but does not influence the Fano-resonance. (f) Both cavity-TLA and cavity-mirror are detuned (ωc ≠ Ω, ωm ≠ Ω). Two Fano resonances occur at ω = Ω and ω = ωm, respectively.
Fig. 4
Fig. 4 Transmission spectra affected by the dissipations of the system. (a)–(c) All the modes are resonant (i.e., ωc = ωm = Ω). It is seen that resonant photons are perfectly transmitted and insensitive to the dissipations of the TLA, cavity-, and the external modes. Other parameters are chosen as g = 0.03Ω and Vm = 0.04Ω. (d)–(f) Cavity-TLA is resonant but the cavity-mirror is detuned, e.g., ωc = Ω and ωm = 0.9Ω. It can be seen that: i) the dissipation of the cavity mainly influences the minimum values of the transmission spectra; ii) the dissipation of the external mode plays an important role in Fano resonance; and iii) the dissipation of the TLA affects the formation of Rabi splittings. Corresponding parameters are set as: g = 0.03Ω and Vm = 0.01Ω.
Fig. 5
Fig. 5 A potential setup constructed by two pieces of photonic crystals with different lattice constants a1 and a2. A cavity with a two-level quantum dot inside (the small red ball) is coupled to both a parallel waveguide and a vertical waveguide. The vertical waveguide with width 3 a 1 is terminated at one end by the other vertical waveguide (with width 3 a 2) to form a hetero-interface. Utilizing the external mode provided by the complete- reflect mirror (placed in the distance of D over the cavity), the transporting properties of the photons along the parallel waveguide, such as Rabi-splitting and Fano-resonance, can be controlled by the cavity-mirror coupling demonstrated above.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H = H p + H a + H c + H m + H ac + H pc + H cm .
H p = d x [ C R ( x ) ( i V g x ) C R ( x ) + C L ( x ) i V g x C L ( x ) ] ,
H a = Ω g a g a g + ( Ω e i 1 τ a ) a e a e ,
H c = ( ω c i 1 τ c ) c c ,
H m = ( ω m i 1 τ m ) m m ,
H ac = g [ c a e a g + c a g a e ] ,
H pc = d x δ ( x ) V [ C R ( x ) c + c C R ( x ) + C L ( x ) c + c C L ( x ) ] ,
H cm = V m [ c m + m c ] ,
| Ψ = d x [ ϕ R ( x ) C R ( x ) | 0 + ϕ L ( x ) C L ( x ) | 0 ] + e c c | 0 + e m m | 0 + e a a e a g | 0 .
ϕ R ( x ) = e i k x [ θ ( x ) + t θ ( x ) ] , ϕ L ( x ) = e i k x r θ ( x ) ,
H | Ψ = ω | Ψ ,
i V g x ϕ R ( x ) + Ω g ϕ R ( x ) + V δ ( x ) e c = ω ϕ R ( x ) ,
i V g x ϕ L ( x ) + Ω g ϕ L ( x ) + V δ ( x ) e c = ω ϕ L ( x ) ,
Ω g e c + ( ω c i 1 τ c ) e g + g e a + V d x δ ( x ) ϕ R ( x ) + V d x δ ( x ) ϕ L ( x ) + V m e m = ω e c ,
( Ω e i 1 τ a ) e a + g e c = ω e a ,
Ω g e m + ( ω m i 1 τ m ) e m + V m e c = ω e m .
ω 1 = Ω g 2 + V m 2 , ω 2 = Ω + g 2 + V m 2 ,

Metrics