Abstract

Quantum key distribution (QKD) systems have already reached a reasonable level of maturity. However, a smooth integration and a wide adoption of commercial QKD systems in metropolitan area networks has still remained challenging because of technical and economical obstacles. Mainly the need for dedicated fibers and the strong dependence of the secret key rate on both loss budget and background noise in the quantum channel hinder a practical, flexible and robust implementation of QKD in current and next-generation optical metro networks.

In this paper, we discuss these obstacles and present approaches to share existing fiber infrastructures among quantum and classical channels. Particularly, a proposal for a smooth integration of QKD in optical metro networks, which implies removing spurious background photons caused by optical transmitters, amplifiers and nonlinear effects in fibers, is presented and discussed. We determine and characterize impairments on quantum channels caused by many classical telecom channels at practically used power levels coexisting within the same fiber. Extensive experimental results are presented and indicate that a practical integration of QKD in conventional optical metro networks is possible.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrating quantum key distribution with classical communications in backbone fiber network

Yingqiu Mao, Bi-Xiao Wang, Chunxu Zhao, Guangquan Wang, Ruichun Wang, Honghai Wang, Fei Zhou, Jimin Nie, Qing Chen, Yong Zhao, Qiang Zhang, Jun Zhang, Teng-Yun Chen, and Jian-Wei Pan
Opt. Express 26(5) 6010-6020 (2018)

Quantum metropolitan optical network based on wavelength division multiplexing

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín
Opt. Express 22(2) 1576-1593 (2014)

Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks

Yuan Cao, Yongli Zhao, Jianquan Wang, Xiaosong Yu, Zhangchao Ma, and Jie Zhang
J. Opt. Commun. Netw. 11(6) 285-298 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” IEEE Intern. Conf. on Comp. Syst. and Sign. Process., Bangalore, IEEE, 1291–1293 (1984).
  2. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
    [Crossref]
  3. D. Winkler, “Practical Integration of a Quantum Channel for QKD in commercial WDM systems,” M.Sc. Thesis, Vienna University of Technology, pages 95 (2013).
  4. P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
    [Crossref]
  5. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
    [Crossref]
  6. K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
    [Crossref]
  7. B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
    [Crossref]
  8. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
    [Crossref]
  9. L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
    [Crossref]
  10. T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
    [Crossref]
  11. A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).
  12. S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).
  13. R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).
  14. P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electronics Letters,  33(3), 188–190 (1996).
    [Crossref]
  15. S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).
  16. T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
    [Crossref]
  17. S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).
  18. S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).
  19. VPI Systems, VPItransmissionMaker Optical Systems. [Online]. Available: http://www.vpiphotonics.com/
  20. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” JOSA B,  19(12), 2886–2892, (2002).
    [Crossref]
  21. N. R. Newbury, “Pump-wavelength dependence of Raman gain in single-mode fibers,” Journal of Lightwave Technology,  21(12), 3364–3373 (2003).
    [Crossref]
  22. R. H. Stolen, “Issues in Raman gain measurements,” Tech. Dig. Symp. Optical Fiber Measurements, NIST Special Publication 953 (National Institute of Standards and Technology), Gaithersburg, MD, 139–142 (2000).

2015 (1)

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

2014 (2)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

2013 (1)

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

2012 (1)

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

2011 (1)

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
[Crossref]

2010 (2)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

2009 (1)

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

2003 (1)

N. R. Newbury, “Pump-wavelength dependence of Raman gain in single-mode fibers,” Journal of Lightwave Technology,  21(12), 3364–3373 (2003).
[Crossref]

2002 (1)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” JOSA B,  19(12), 2886–2892, (2002).
[Crossref]

1996 (1)

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electronics Letters,  33(3), 188–190 (1996).
[Crossref]

Aleksic, S.

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

Bennett, C.

C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” IEEE Intern. Conf. on Comp. Syst. and Sign. Process., Bangalore, IEEE, 1291–1293 (1984).

Brassard, G.

C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” IEEE Intern. Conf. on Comp. Syst. and Sign. Process., Bangalore, IEEE, 1291–1293 (1984).

Cantrell, C. D.

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” JOSA B,  19(12), 2886–2892, (2002).
[Crossref]

Chapuran, T E

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Chapuran, T.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Chen, K.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Chen, L.-K.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Chen, T.-Y.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Chen, Z.-B.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Choi, I.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
[Crossref]

Ciurana, A.

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

da Silva, T. F.

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

Dallmann, N

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Dallmann, N.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Dardy, H.

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Dixon, A. R.

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Dynes, J. F.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Elser, D.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Eraerds, P.

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

Franzl, G.

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

Froehlich, B.

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

Gisin, N.

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

Goodman, M S

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Goodman, M. S.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Hipp, F.

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

Hiskett, P. A.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Hollenbeck, D.

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” JOSA B,  19(12), 2886–2892, (2002).
[Crossref]

Hughes, R J

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Hughes, R. J.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Jackel, J

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Ju, L.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Kosloski, J. T.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Legre, M.

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

Lucamarini, M.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

Lydersen, L.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Makarov, V.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Martin, V.

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

McCabe, K P

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

McCabe, K. P.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

McNown, S R

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

McNown, S. R.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Mercer, L.

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Pump-wavelength dependence of Raman gain in single-mode fibers,” Journal of Lightwave Technology,  21(12), 3364–3373 (2003).
[Crossref]

Nordholt, J E

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Nordholt, J. E.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Nweke, N.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Pan, J.-W.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Patel, K. A.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Peev, M.

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

Penty, R.V.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Peters, N A

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Peters, N. A.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Peterson, C G

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Peterson, C. G.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Poppe, A.

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

Rosenberg, D.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Runser, R J

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Runser, R. J.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Schrenk, B.

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

Sharpe, A.W.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Shields, A. J.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Skaar, J.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Stolen, R. H.

R. H. Stolen, “Issues in Raman gain measurements,” Tech. Dig. Symp. Optical Fiber Measurements, NIST Special Publication 953 (National Institute of Standards and Technology), Gaithersburg, MD, 139–142 (2000).

Temperão, G. P.

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

Toliver, P

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Toliver, P.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

Townsend, P.

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electronics Letters,  33(3), 188–190 (1996).
[Crossref]

Townsend, P. D.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
[Crossref]

Tyagi, K T

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Tyagi, K.

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

von der Weid, J. P.

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

Walenta, N.

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

Wang, L.-J.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Wiechers, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Winkler, D.

D. Winkler, “Practical Integration of a Quantum Channel for QKD in commercial WDM systems,” M.Sc. Thesis, Vienna University of Technology, pages 95 (2013).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

Wittmann, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

Xavier, G. B.

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

Xu, M.-L.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Young, R. J.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
[Crossref]

Yuan, Z. L.

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Zbinden, H.

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

Zhao, Y.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Applied Phisics Letters (1)

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen, T.-Y. Chen, and J.-W. Pan, “Experimatal multiplexing of quantum key distribution with classical optical communication,” Applied Phisics Letters 106081108 (2015).
[Crossref]

Applied Physics Letters (1)

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Applied Physics Letters 104051123 (2014).
[Crossref]

Electronics Letters (1)

P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electronics Letters,  33(3), 188–190 (1996).
[Crossref]

JOSA B (1)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function,” JOSA B,  19(12), 2886–2892, (2002).
[Crossref]

Journal of Lightwave Technology (2)

N. R. Newbury, “Pump-wavelength dependence of Raman gain in single-mode fibers,” Journal of Lightwave Technology,  21(12), 3364–3373 (2003).
[Crossref]

T. F. da Silva, G. B. Xavier, G. P. Temperão, and J. P. von der Weid, “Impact of Raman scattered noise from multiple telecom channels on fiber-optic quantum key distribution systems,” Journal of Lightwave Technology,  32(13), 2332–2339 (2014).
[Crossref]

Nature (1)

B. Froehlich, J. F. Dynes, M. Lucamarini, A.W. Sharpe, Z. L. Yuan, and A. J. Shields, “A quantum access network,” Nature 501, 69–72 (2013).
[Crossref]

Nature Photonics (1)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photonics 4(10), 686–689 (2010).
[Crossref]

New Journal of Physics (3)

P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibr,” New Journal of Physics,  12(6), 063027 (2010).
[Crossref]

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New Journal of Physics 13, 063039 (2011).
[Crossref]

T E Chapuran, P Toliver, N A Peters, J Jackel, M S Goodman, R J Runser, S R McNown, N Dallmann, R J Hughes, K P McCabe, J E Nordholt, C G Peterson, K T Tyagi, L. Mercer, and H. Dardy, “Optical networking for QKD and quantum communications,” New Journal of Physics 13, 105001 (2009).
[Crossref]

Physical Review X (1)

K. A. Patel, J. F. Dynes, I. Choi, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R.V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” Physical Review X,  2, 041010 (2012).
[Crossref]

Other (10)

C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” IEEE Intern. Conf. on Comp. Syst. and Sign. Process., Bangalore, IEEE, 1291–1293 (1984).

D. Winkler, “Practical Integration of a Quantum Channel for QKD in commercial WDM systems,” M.Sc. Thesis, Vienna University of Technology, pages 95 (2013).

A. Poppe, B. Schrenk, F. Hipp, M. Peev, S. Aleksic, G. Franzl, A. Ciurana, and V. Martin, “Integration of Quantum Key Distribution in Metropolitan Area Networks,” 2014 OSA Optics & Photonics Research in Optical Sciences Congress, Quantum Information and Measurement, Berlin, Germany, 1–3 (2014).

S. Aleksic, D. Winkler, G. Franzl, A. Poppe, B. Schrenk, and F. Hipp, “Quantum Key Distribution over Optical Access Networks,” 18th European Conference on Networks and Optical Communications (NOC 2013), pp. 11–18 (2013).

R. J. Runser, T. Chapuran, P. Toliver, N. A. Peters, M. S. Goodman, J. T. Kosloski, N. Nweke, S. R. McNown, R. J. Hughes, D. Rosenberg, C. G. Peterson, K. P. McCabe, J. E. Nordholt, K. Tyagi, P. A. Hiskett, and N. Dallmann, “Progress toward quantum communications networks: opportunities and challenges,” Proc. SPIE 6476, Optoelectronic Integrated Circuits IX, 6476, 6476OI (2007).

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Impairment Evaluation toward QKD Integration in a Conventional 20-Channel Metro Network,” Optical Fiber Communication Conference (OFC 2015), Los Angeles, California, USA, W4F.2 (2015).

S. Aleksic, D. Winkler, F. Hipp, A. Poppe, G. Franzl, and B. Schrenk, “Towards a Smooth Integration of Quantum Key Distribution in Metro Networks,” 16th International Conference on Transparent Optical Networks (ICTON 2014), Graz, paper Tu.B1.1 (2014).

VPI Systems, VPItransmissionMaker Optical Systems. [Online]. Available: http://www.vpiphotonics.com/

R. H. Stolen, “Issues in Raman gain measurements,” Tech. Dig. Symp. Optical Fiber Measurements, NIST Special Publication 953 (National Institute of Standards and Technology), Gaithersburg, MD, 139–142 (2000).

S. Aleksic, D. Winkler, A. Poppe, G. Franzl, B. Schrenk, and F. Hipp, Distribution of quantum keys in optical transparent networks: issues and challenges,” 15th International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, We.B1.3 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 QKD experiments using weak pulse and entanglement-based QKD systems.
Fig. 2
Fig. 2 Deployment of QKD in metropolitan area networks using a smooth integration in the co-existence scheme (CPE: Customer Premises Equipment, ONT: Optical Network Terminal, OLT: Optical Line Terminal).
Fig. 3
Fig. 3 Raman gain profile as used in simulations.
Fig. 4
Fig. 4 Experimental and simulation setup for analyzing the influence of forward Raman scattering on integrated QKD systems in metropolitan area networks. Inset measurement and simulation results for 14 km of standard single mode fiber (SSMF) and the wavelength range from 1250 nm to 1400 nm. The resolution bandwidth was 0.1 nm in both cases (measurement and simulation). FWDM: Far Wavelength Division Multiplexer.
Fig. 5
Fig. 5 Experimental setup for characterization of QKD integration in metropolitan area networks. Inset measured transmission and reflection curves for different FWDM components used to combine/separate quantum and classical channels as well as measured quantum efficiency of the single photon avalanche photodiode (SPAD) used to count noise photons below 1410 nm.
Fig. 6
Fig. 6 Characterization of fiber attenuation for different fiber types and lengths obtained using a white light source. Low-water-peak fibers (LWPF) and standard single mode fibers (SSMF) in one piece or made from two pieces (14 km + 13 km) are chosen to reflect the variety of installed fibers.
Fig. 7
Fig. 7 Forward Raman scattering: noise power level within the O-band caused by the strong classical signals in the C-band of a conventional DWDM system in operation. Results are shown for different fiber types and lengths. Also background noise of the signal before transmission is shown (red line).
Fig. 8
Fig. 8 Setup for measuring the noise level caused by backward Raman scattering.
Fig. 9
Fig. 9 Backward Raman scattering: noise power level within the O-band caused by the strong classical signals in the C-band of a conventional DWDM system in operation. Results are shown for different fiber types and lengths. Also background noise of the signal before transmission is shown (red line).
Fig. 10
Fig. 10 Fiber input signals for characterizing the main cause of the Raman-generated noise in the O-band measured by an OSA.
Fig. 11
Fig. 11 Contributions of signals I, II, III and IV (see Fig. 10) to the noise in the O-band a) for forward and b) backward scattering. Also background noise of the signal (back-to-back) before transmission is shown (grey line).
Fig. 12
Fig. 12 Raman counts obtained for 14 km SSMF using 1510 nm and 1410 nm FWDM.
Fig. 13
Fig. 13 Raman scattering caused by signals with optical supervisory channel (OSC) (II and III) show a different behavior from the signal with suppressed OSC.
Fig. 14
Fig. 14 Simulation setup for characterizing a) amplifier bypass and b) node bypass. Note that the bypassed node is assumed to be opaque, i.e., the incoming DWDM signal is terminated at the input and a new one generated at the output. EDFA: Erbium-Doped Fiber Amplifier.
Fig. 15
Fig. 15 Simulation results for amplifier and node bypass.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h R ( t ) = i = 1 13 A i ω υ , i exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) s i n ( ω υ , i ) θ ( t )
s ( ω ) = l = 1 13 A i 2 ω υ , i 0 exp ( γ i t ) exp ( Γ i 2 t 2 / 4 ) { c o s [ ( ω υ , i ω ) t ] c o s [ ( ω υ , i + ω ) t ] } d t ,

Metrics