Abstract

A dynamic polarization scanning ellipsometry technique based on Stokes polarimetry is proposed for dynamically characterizing a voltage-driven twisted nematic liquid crystal (TNLC) cell. In the proposed method, the six effective ellipsometric parameters are extracted under modulation voltages ranging from 0 V ~ + 10 V using four linearly polarized input lights. The profiles of the tilt angle and twist angle are calculated as a function of the modulation voltage. The validity of the proposed method is confirmed by comparing the experimental results for the effective ellipsometric parameters of a TNLC cell with the analytical results. Furthermore, a genetic algorithm (GA) based on a curve-fitting technique is used to inversely extract the pretilt angle, twist angle and rubbing direction of the TNLC cell. These extracted values are then compared to the known valued of the TNLC cell. In general, the results presented in this paper show that the proposed method provides a reliable means of obtaining the dynamic optical properties of a TNLC cell.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of azimuthal anchoring strength in twisted nematic liquid crystal cells using heterodyne polarimeter

Tsung-Chih Yu, Yu-Lung Lo, and Rei-Rong Huang
Opt. Express 18(20) 21169-21182 (2010)

Full-field characterization of a twisted nematic liquid-crystal device using equivalence theorem of a unitary optical system

Chih-Jen Yu, Yao-Teng Tseng, Kuei-Chu Hsu, and Chien Chou
Appl. Opt. 51(2) 238-244 (2012)

Spectral method for fast measurement of twisted nematic liquid crystal cell parameters

Plinio Jesús Pinzón, Isabel Pérez, José Manuel Sánchez-Pena, and Carmen Vázquez
Appl. Opt. 53(23) 5230-5237 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
    [Crossref]
  2. P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometry,” Opt. Commun. 14(4), 431–437 (1975).
    [Crossref]
  3. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148–150 (1978).
    [Crossref] [PubMed]
  4. R. M. A. Azzam, “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Opt. Commun. 25(2), 137–140 (1978).
    [Crossref]
  5. R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
    [Crossref]
  6. R. M. A. Azzam, “NIRSE: normal-incident rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
    [Crossref]
  7. Y. Cui and R. M. A. Azzam, “Applications of the normal-incidence rotating-sample ellipsometer to high- and low-spatial-frequency gratings,” Appl. Opt. 35(13), 2235–2238 (1996).
    [Crossref] [PubMed]
  8. J. A. Woollam and P. G. Snyder, “Fundamentals and applications of variable angle spectroscopic ellipsometry,” Mater. Sci. Eng. 5(2), 279–283 (1990).
    [Crossref]
  9. D. T. Tonova and A. A. Konova, “Sensitivity of variable angle of incidence spectroscopic ellipsometry to compositional profiles of graded AlxGa1-xAs-GaAs structures,” Appl. Surf. Sci. 74(3), 235–242 (1994).
    [Crossref]
  10. T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
    [Crossref]
  11. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [Crossref] [PubMed]
  12. S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
    [Crossref] [PubMed]
  13. L. M. S. Aas, P. G. Ellingsen, B. E. Fladmark, P. A. Letnes, and M. Kildemo, “Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms,” Opt. Express 21(7), 8753–8762 (2013).
    [Crossref] [PubMed]
  14. G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
    [Crossref]
  15. L. J. K. Cross and D. K. Hore, “Dual-modulator broadband infrared Mueller matrix ellipsometry,” Appl. Opt. 51(21), 5100–5110 (2012).
    [Crossref] [PubMed]
  16. R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
    [Crossref]
  17. S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52(10), 103114 (2013).
    [Crossref]
  18. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51(28), 6805–6817 (2012).
    [Crossref] [PubMed]
  19. T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
    [Crossref]
  20. Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
    [Crossref]
  21. N. Uribe-Patarroyo and A. Alvarez-Herrero, “Determination of the molecular tilt profile of a liquid crystal under applied electric field by generalized transmission ellipsometry,” J. Opt. Soc. Am. B 26(6), 1188–1195 (2009).
    [Crossref]
  22. Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
    [Crossref]
  23. Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry method for measuring effective ellipsometric parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
    [Crossref]
  24. C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
    [Crossref]
  25. T. Nishioka and T. Kurata, “Novel pretilt angle measurement method for twisted nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. 40(10), 6017–6023 (2001).
    [Crossref]
  26. H. J. Cho and Y. H. Lee, “Characterization of a twisted-nematic liquid crystal display by a simple model,” J. Opt. A- Pure Appl. Op. 11, 1–6 (2009).

2013 (6)

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

L. M. S. Aas, P. G. Ellingsen, B. E. Fladmark, P. A. Letnes, and M. Kildemo, “Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms,” Opt. Express 21(7), 8753–8762 (2013).
[Crossref] [PubMed]

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52(10), 103114 (2013).
[Crossref]

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry method for measuring effective ellipsometric parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
[Crossref]

2012 (2)

2011 (2)

G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
[Crossref]

C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
[Crossref]

2010 (1)

T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
[Crossref]

2009 (2)

2001 (2)

Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
[Crossref]

T. Nishioka and T. Kurata, “Novel pretilt angle measurement method for twisted nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. 40(10), 6017–6023 (2001).
[Crossref]

1998 (1)

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

1996 (1)

1994 (1)

D. T. Tonova and A. A. Konova, “Sensitivity of variable angle of incidence spectroscopic ellipsometry to compositional profiles of graded AlxGa1-xAs-GaAs structures,” Appl. Surf. Sci. 74(3), 235–242 (1994).
[Crossref]

1992 (1)

1991 (1)

R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
[Crossref]

1990 (1)

J. A. Woollam and P. G. Snyder, “Fundamentals and applications of variable angle spectroscopic ellipsometry,” Mater. Sci. Eng. 5(2), 279–283 (1990).
[Crossref]

1980 (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

1978 (2)

R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148–150 (1978).
[Crossref] [PubMed]

R. M. A. Azzam, “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Opt. Commun. 25(2), 137–140 (1978).
[Crossref]

1977 (1)

R. M. A. Azzam, “NIRSE: normal-incident rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[Crossref]

1975 (1)

P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometry,” Opt. Commun. 14(4), 431–437 (1975).
[Crossref]

Aas, L. M. S.

Akahane, T.

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Alali, S.

S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52(10), 103114 (2013).
[Crossref]

Alvarez-Herrero, A.

Arteaga, O.

Azzam, R. M. A.

Y. Cui and R. M. A. Azzam, “Applications of the normal-incidence rotating-sample ellipsometer to high- and low-spatial-frequency gratings,” Appl. Opt. 35(13), 2235–2238 (1996).
[Crossref] [PubMed]

R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
[Crossref]

R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148–150 (1978).
[Crossref] [PubMed]

R. M. A. Azzam, “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Opt. Commun. 25(2), 137–140 (1978).
[Crossref]

R. M. A. Azzam, “NIRSE: normal-incident rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[Crossref]

Bruce, N. C.

C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
[Crossref]

Castro-Sanchez, R.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Chao, Y. F.

Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
[Crossref]

Cho, H. J.

H. J. Cho and Y. H. Lee, “Characterization of a twisted-nematic liquid crystal display by a simple model,” J. Opt. A- Pure Appl. Op. 11, 1–6 (2009).

Chung, Y. F.

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry method for measuring effective ellipsometric parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
[Crossref]

Cibrian, R. M.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Cross, L. J. K.

Cui, Y.

Dill, F. H.

P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometry,” Opt. Commun. 14(4), 431–437 (1975).
[Crossref]

El-Agez, T. M.

T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
[Crossref]

Ellingsen, P. G.

El-Tayyan, A. A.

T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
[Crossref]

Fladmark, B. E.

Freudenthal, J.

Fukazawa, T.

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Fusilier, D. H.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Giardina, K. A.

R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
[Crossref]

Goldstein, D. H.

Hall, S. A.

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

Hauge, P. S.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometry,” Opt. Commun. 14(4), 431–437 (1975).
[Crossref]

Hore, D. K.

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

L. J. K. Cross and D. K. Hore, “Dual-modulator broadband infrared Mueller matrix ellipsometry,” Appl. Opt. 51(21), 5100–5110 (2012).
[Crossref] [PubMed]

Hoyle, M. A.

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

Hsieh, W. H.

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

Hurtado-Ramos, J. B.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Kahr, B.

Kildemo, M.

Kimura, M.

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Konova, A. A.

D. T. Tonova and A. A. Konova, “Sensitivity of variable angle of incidence spectroscopic ellipsometry to compositional profiles of graded AlxGa1-xAs-GaAs structures,” Appl. Surf. Sci. 74(3), 235–242 (1994).
[Crossref]

Kurata, T.

T. Nishioka and T. Kurata, “Novel pretilt angle measurement method for twisted nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. 40(10), 6017–6023 (2001).
[Crossref]

Lee, Y. H.

H. J. Cho and Y. H. Lee, “Characterization of a twisted-nematic liquid crystal display by a simple model,” J. Opt. A- Pure Appl. Op. 11, 1–6 (2009).

Letnes, P. A.

Liao, C. C.

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

Lin, A.

Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
[Crossref]

Lin, H. H.

Lo, Y. L.

Y. L. Lo, Y. F. Chung, and H. H. Lin, “Polarization scanning ellipsometry method for measuring effective ellipsometric parameters of isotropic and anisotropic thin films,” J. Lightwave Technol. 31(14), 2361–2369 (2013).
[Crossref]

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

Lopez, A. G.

R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
[Crossref]

López Téllez, J. M.

C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
[Crossref]

Martinez-Celorio, R. A.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Martínez-Ponce, G.

G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
[Crossref]

Muller, R. H.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Nishioka, T.

T. Nishioka and T. Kurata, “Novel pretilt angle measurement method for twisted nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. 40(10), 6017–6023 (2001).
[Crossref]

Pérez-Barrios, C.

G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
[Crossref]

Post, J. S.

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

Salvador, R.

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

Smith, C. G.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Snyder, P. G.

J. A. Woollam and P. G. Snyder, “Fundamentals and applications of variable angle spectroscopic ellipsometry,” Mater. Sci. Eng. 5(2), 279–283 (1990).
[Crossref]

Solano, C.

G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
[Crossref]

Tadokoro, T.

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Taya, S. A.

T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
[Crossref]

Tonova, D. T.

D. T. Tonova and A. A. Konova, “Sensitivity of variable angle of incidence spectroscopic ellipsometry to compositional profiles of graded AlxGa1-xAs-GaAs structures,” Appl. Surf. Sci. 74(3), 235–242 (1994).
[Crossref]

Toriumi, H.

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Uribe-Patarroyo, N.

Velázquez Olivera, C. A.

C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
[Crossref]

Vitkin, I. A.

S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52(10), 103114 (2013).
[Crossref]

Wang, B.

Wang, M. W.

Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
[Crossref]

Woollam, J. A.

J. A. Woollam and P. G. Snyder, “Fundamentals and applications of variable angle spectroscopic ellipsometry,” Mater. Sci. Eng. 5(2), 279–283 (1990).
[Crossref]

Anal. Chem. (1)

S. A. Hall, M. A. Hoyle, J. S. Post, and D. K. Hore, “Combined Stokes vector and Mueller matrix Polarimetry for materials characterization,” Anal. Chem. 85(15), 7613–7619 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Surf. Sci. (1)

D. T. Tonova and A. A. Konova, “Sensitivity of variable angle of incidence spectroscopic ellipsometry to compositional profiles of graded AlxGa1-xAs-GaAs structures,” Appl. Surf. Sci. 74(3), 235–242 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. L. Lo, Y. F. Chung, C. C. Liao, and W. H. Hsieh, “Transmited ellipsometry method for extracting physical parameters of TN/VA/Inverse-TN liquid crystal cells,” IEEE J. Quantum Electron. 49(3), 259–266 (2013).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. Castro-Sanchez, R. A. Martinez-Celorio, R. M. Cibrian, R. Salvador, D. H. Fusilier, and J. B. Hurtado-Ramos, “Synchronization of two photoelastic light modulators to obtain Mueller matrix,” IEEE Trans. Instrum. Meas. 62(7), 2050–2057 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A- Pure Appl. Op. (1)

H. J. Cho and Y. H. Lee, “Characterization of a twisted-nematic liquid crystal display by a simple model,” J. Opt. A- Pure Appl. Op. 11, 1–6 (2009).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Nishioka and T. Kurata, “Novel pretilt angle measurement method for twisted nematic liquid crystal cells by apparent retardation measurement,” Jpn. J. Appl. Phys. 40(10), 6017–6023 (2001).
[Crossref]

Mater. Sci. Eng. (1)

J. A. Woollam and P. G. Snyder, “Fundamentals and applications of variable angle spectroscopic ellipsometry,” Mater. Sci. Eng. 5(2), 279–283 (1990).
[Crossref]

Opt. Commun. (3)

P. S. Hauge and F. H. Dill, “A rotating-compensator Fourier ellipsometry,” Opt. Commun. 14(4), 431–437 (1975).
[Crossref]

R. M. A. Azzam, “A simple Fourier photopolarimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices,” Opt. Commun. 25(2), 137–140 (1978).
[Crossref]

R. M. A. Azzam, “NIRSE: normal-incident rotating-sample ellipsometer,” Opt. Commun. 20(3), 405–408 (1977).
[Crossref]

Opt. Eng. (2)

R. M. A. Azzam, K. A. Giardina, and A. G. Lopez, “Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter,” Opt. Eng. 30(10), 1583–1589 (1991).
[Crossref]

S. Alali and I. A. Vitkin, “Optimization of rapid Mueller matrix imaging of turbid media using four photoelastic modulators without mechanical moving parts,” Opt. Eng. 52(10), 103114 (2013).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49(6), 723–728 (2011).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

Y. F. Chao, A. Lin, and M. W. Wang, “Photoelastic modulation polarimetry and its measurement of twisted nematic liquid crystal,” Proc. SPIE 4595, 43–51 (2001).
[Crossref]

C. A. Velázquez Olivera, J. M. López Téllez, and N. C. Bruce, “Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function,” Proc. SPIE 8011, 80110C (2011).
[Crossref]

Surf. Sci. (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[Crossref]

Thin Solid Films (2)

T. M. El-Agez, A. A. El-Tayyan, and S. A. Taya, “Rotating polarizer analyser scanning ellipsometry,” Thin Solid Films 518(19), 5610–5614 (2010).
[Crossref]

T. Fukazawa, T. Tadokoro, H. Toriumi, T. Akahane, and M. Kimura, “Application of time-resolved spectroellipsometry to the study of liquid crystal reorientation dynamics,” Thin Solid Films 313–314, 799–802 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Configuration of proposed dynamic polarization scanning ellipsometry system.
Fig. 2
Fig. 2 Experimental results and GA simulation results for effective ellipsometric parameters of TNLC cell with no driving voltage
Fig. 3
Fig. 3 Experimental results and GA simulation results for effective ellipsometric parameters of TNLC cell for driving voltages. (a) 0 ~2.54 V. (b) 3.04V. (c) 4.03 V. (d) 4.53 ~10 V.
Fig. 4
Fig. 4 Distributions of twist angle (blue line) and tilt angle (red line) of the LC director across width of TNLC cell as function of applied voltage.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

S output = [ S 0 S 1 S 2 S 3 ] output = [ M ] TNLC S ^ input = [ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] TNLC [ S ^ 0 S ^ 1 S ^ 2 S ^ 3 ] input
[ S out ] P - S =[R(θ)][M] X-Y [ S in ] X-Y
Ψ p p = tan -1 { ( S 0 0 ( S 0 ) +S 0 0 ( S 1 ) S 90 0 ( S 0 ) -S 90 0 ( S 1 ) ) 1 2 }
Ψ p s = tan -1 { ( S 90 0 ( S 0 )+ S 90 0 ( S 1 ) S 90 0 ( S 0 )- S 90 0 ( S 1 ) ) 1 2 }
Ψ s p = tan -1 { ( S 0 0 ( S 0 ) -S 0 0 ( S 1 ) S 90 0 ( S 0 ) -S 90 0 ( S 1 ) ) 1 2 }
Δ p p = tan -1 { ( S 135 0 ( S 3 ) -S 45 0 ( S 3 ) )-( S 90 0 ( S 0 ) -S 90 0 ( S 1 ) )( tan( Ψ s p )tan p s 1 ) ( S 45 0 ( S 2 ) -S 135 0 ( S 2 ) )-( S 90 0 ( S 0 ) -S 90 0 ( S 1 ) )( tan( Ψ s p )tan p s 2 ) }
Δ p s = tan -1 ( -S 90 0 ( S 3 ) S 90 0 ( S 2 ) )
Δ s p = tan -1 ( sin( Δ s p ) cos( Δ s p ) )
r ss r ss * = S 90 0 ( S 0 ) tan 2 ( Ψ ps )+1
η 1 =sin( Δ p s Δ s p )
η 2 =cos( Δ p s Δ s p )
m 33 = S 45 0 ( S 2 ) S 135 0 ( S 2 ) 2r ss r ss *
m 43 = S 45 0 ( S 3 )- S 135 0 ( S 3 ) 2r ss r ss *
Δ p p s p = tan -1 ( -S 0 0 ( S 3 ) S 0 0 ( S 2 ) )
sin( Δ s p )= 2cos( Δ s p )( m 33 sin( Δ p s )+ m 43 cos( Δ p s ))sin( Δ p s )(2tan( Ψ p p )cos( Δ p p Δ s p )sin( Δ p p Δ s p ) 2 m 43 sin( Δ p s )2 m 33 cos( Δ p s )+4tan( Ψ p s )tan( Ψ s p )cos( Δ s p )
cos( Δ s p )= S 45 0 ( S 0 ) -S 135 0 ( S 0 ) +S 135 0 ( S 1 ) -S 45 0 ( S 1 ) 2tan( Ψ s p ) 2r ss r ss *
S out1 =Q( 0 0 ).E O 1 ( 45 0 ). S in
[ 1 cosβ sinβ 0 ]=[ 1 0 0 0 0 1 0 0 0 0 0 1 0 0 -1 0 ].[ 1 0 0 0 0 cosβ 0 -sinβ 0 0 1 0 0 sinβ 0 cosβ ][ 1 1 0 0 ]
β= πV V λ/2
S out2 =A( 0 0 ).E O 3 ( 45 0 ).E O 2 ( 0 0 ) S unknown
[ I(β 1 2 ) I(β 1 2 ) 0 0 ]= [ 1/2 1/2 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 ].[ 1 0 0 0 0 cos β 2 0 -sin β 2 0 0 1 0 0 sin β 2 0 cos β 2 ][ 1 0 0 0 0 1 0 0 0 0 cos β 1 sin β 1 0 0 -sin β 1 cos β 1 ][ S 0 S 1 S 2 S 3 ]
I(β 1 2 )=A+Bcos β 2 +Csin β 1 sin β 2 +Dcos β 1 sin β 2
I(β 1 )=A+Bcos( β 1 )+Csin( 1 )+Dsin( 1 )
A= 1 β -λ/2 β λ/2 I( β 1 ).d( β 1 )
B= 1 π β -λ/2 β λ/2 I( β 1 ).cos( β 1 ).d( β 1 )
C= 1 π β -λ/2 β λ/2 I( β 1 ).cos(2 β 1 ).d( β 1 )
D= 1 π β -λ/2 β λ/2 I( β 1 ).sin(2 β 1 ).d( β 1 )
e= n=1 K [ x Ψ pp (n) + x Ψ ps (n) + x Ψ sp (n) + x Δ pp (n) + x Δ ps (n) + x Δ sp (n) ]
φ(z)=C[ 0 z0.5 e A t 2 dt+ 0 0.5 e A t 2 dt ]
θ(z)= π 2 B{ 1 e Bsin(πz) }
θ(z)=( π 2 θ 0 )B{ 1 e Bsin(πz) } + θ 0

Metrics