Abstract

We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks

Kam-Hon Tse and Chun-Kit Chan
Opt. Express 22(16) 18934-18939 (2014)

Common phase error estimation in coherent optical OFDM systems using best-fit bounding box

Tianwai Bo and Chun-Kit Chan
Opt. Express 24(21) 23707-23718 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).
  2. S. Zhang, S. C. Liew, and P. P. K. Lam, “Physical-layer network coding”, presented at International Conference on Mobile Computing and Networking (MobiComm), Los Angeles, CA USA (2006), Paper C.2.1.
  3. Y. An, F. Da Ros, and C. Peucheret, “All-optical network coding for DPSK signals,” presented at Optical Fiber Communication Conference (OFC), Anaheim, CA USA (2013), Paper JW2A.60.
  4. Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
    [Crossref]
  5. Z. Liu, L. Lu, L. You, C. K. Chan, and S. C. Liew, “Optical physical-layer network coding for fiber-wireless,” presented at European Conference on Optical Communications (ECOC), London, UK (2013), Paper Mo.3.F.3.
  6. M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
    [Crossref]
  7. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  8. X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
    [Crossref]

2014 (1)

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

2012 (1)

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

2008 (1)

2007 (1)

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

2003 (1)

S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).

Bao, H.

Cai, N.

S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).

Chan, C. K.

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Chen, L. K.

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Li, M.

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Li, S. Y. R.

S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).

Liew, S. C.

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Liu, Z. X.

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Lu, L.

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Tang, Y.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Wu, Y.

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

Yeung, R. W.

S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).

Yi, X.

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Z. X. Liu, M. Li, L. Lu, C. K. Chan, S. C. Liew, and L. K. Chen, “Optical physical-layer network coding,” IEEE Photon. Technol. Lett. 24(16), 1424–1427 (2012).
[Crossref]

M. Li, Y. Wu, L. K. Chen, and S. C. Liew, “Common-channel optical physical-layer network coding,” IEEE Photon. Technol. Lett. 26(13), 1340–1342 (2014).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photon. Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

IEEE Trans. on Info, Theory (1)

S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE Trans. on Info, Theory 49(2), 371–387 (2003).

Opt. Express (1)

Other (3)

S. Zhang, S. C. Liew, and P. P. K. Lam, “Physical-layer network coding”, presented at International Conference on Mobile Computing and Networking (MobiComm), Los Angeles, CA USA (2006), Paper C.2.1.

Y. An, F. Da Ros, and C. Peucheret, “All-optical network coding for DPSK signals,” presented at Optical Fiber Communication Conference (OFC), Anaheim, CA USA (2013), Paper JW2A.60.

Z. Liu, L. Lu, L. You, C. K. Chan, and S. C. Liew, “Optical physical-layer network coding for fiber-wireless,” presented at European Conference on Optical Communications (ECOC), London, UK (2013), Paper Mo.3.F.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical multicast topology: (a) wavelength division multiplexing, (b) timing division multiplexing, (c) OPNC
Fig. 2
Fig. 2 (a) OFDM model, (b) OPNC model, (c) OPNC frame alignment, (d) OPNC spectrum
Fig. 3
Fig. 3 (a) Experimental setup. AWG: arbitrary waveform generator, ECL: external cavity laser, VOA: variable optical attenuator, OSA: optical spectrum analyzer, OBPF: optical bandpass filter, PC: polarization controller, (b) DSP process
Fig. 4
Fig. 4 Measured BER versus OSNR with and without OPNC
Fig. 5
Fig. 5 Simulation results: (a) BER performance under different misalignment between the two signals, represented by the number of samples, (b) BER performance under different synchronization error of the decoded arm between two signals.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

x A (t)=exp(j2π f tx t)s(t)
s(t)= k=0 N1 S(k)exp(j2π f k t+θ) = F 1 {S(k)}
Δf= f k f k1 ,k1,k[0,N1]
x B (t)=exp(j2π f IF t+θ) F 1 {S(k)H(k)}
x A (t)=exp(j2π f tx(T) t+ θ 1 ) s N 1 (t)+exp(j2π f tx(U) t+ θ 2 ) s N 2 (t)
s N 1 (t)= F 1 { S N 1 (k)}
s N 2 (t)= F 1 { S N 2 (k)}
x B (t)=exp(j2π f IF( N 1 ) t+ θ N 1 ) F 1 { S N 1 (k) H N 1 (k)}+ exp(j2π f IF( N 2 ) t+ θ N 2 ) F 1 { S N 2 (k) H N 2 (k)}
x N 1 (t)=exp(j2π f IF( N 1 ) t+ θ N 1 ) F 1 { S N 1 (k) H N 1 (k)}
x N 2 (t)= x B (t) x N 1 (t)
x N 2 (t)=exp(j2π f IF( N 2 ) t+ θ N 2 ) F 1 { S N 2 (k) H N 2 (k)}
S N 2 (k)= F{ x N 2 (t)exp(j2π f IF( N 2 ) t θ N 2 )} H N 2 (k) ,k=0,,N1
Δ f tx =| f tx(T) f tx(U) |
Δ f tx mΔf

Metrics