Abstract

Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PMD tolerant direct-detection polarization division multiplexed OFDM systems with MIMO processing

Chia-Chien Wei, Chun-Ting Lin, and Chih-Yun Wang
Opt. Express 20(7) 7316-7322 (2012)

Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

Junwei Zhang, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu
Opt. Express 26(4) 4243-4257 (2018)

Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission

Dongdong Zou, Yongchao Chen, Zibin Li, Fan Li, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Xingwen Yi, and Zhaohui Li
Opt. Express 27(4) 5696-5702 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
    [Crossref]
  2. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  3. K. P. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref]
  4. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J. F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
    [Crossref] [PubMed]
  5. K. P. Zhong, W. Chen, Q. Sui, M. J. Wei, A. P. T. Lau, C. Lu, and L. Zeng, “Low cost 400GE transceiver for 2km optical interconnect using PAM4 and direct detection, ” in Asia Communications and Photonics Conference (ACP) (2014), paper, ATh4D.2.
    [Crossref]
  6. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
    [Crossref] [PubMed]
  7. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32(4), 798–804 (2014).
    [Crossref]
  8. L. Tao, Y. Wang, J. Xiao, and N. Chi, “Enhanced performance of 400 Gb/s DML-based CAP systems using optical filtering technique for short reach communication,” Opt. Express 22(24), 29331–29339 (2014).
    [Crossref] [PubMed]
  9. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.
  10. F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
    [Crossref] [PubMed]
  11. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [Crossref]
  12. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-signals Using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based Receiver,” in Proc. ECOC (2014), Post-deadline paper PD. 4.4.
  13. D. J. F. Barros and J. M. Kahn, “Comparison of orthogonal frequency-division multiplexing and on-off keying in amplified direct-detection single-mode fiber systems,” J. Lightwave Technol. 28(12), 1811–1820 (2010).
    [Crossref]
  14. C. Chen, M. Zamani, Z. Zhang, and C. Li, “Rate-adaptive coding for direct-detection of discrete multi-tones,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper M2C.2.
    [Crossref]
  15. L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Grießer, M. Eiselt, and J. P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 3541–3551 (2014).
    [Crossref]
  16. L. Liu, Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Initial tap setup of constant modulus algorithm for polarization de-multiplexing in optical coherent receivers,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2009), paper OMT2.
    [Crossref]
  17. A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
    [Crossref]

2015 (1)

2014 (5)

2013 (3)

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems,” Opt. Express 21(5), 6459–6465 (2013).
[Crossref] [PubMed]

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

2010 (3)

Barros, D. J. F.

Chagnon, M.

Chen, L.

Chen, W.

Chi, N.

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

Cvijetic, N.

Dochhan, A.

Eiselt, M.

Elbers, J. P.

Fàbrega, J. M.

Gagné, J. F.

Gao, Y.

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

Grießer, H.

Gui, T.

Hu, J.

Jensen, J. B.

Ji, Y.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Kahn, J. M.

Kai, Y.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Latrasse, C.

Lau, A. P. T.

Lessard, S.

Li, F.

Li, L.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Li, X.

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lu, C.

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

Man, J.

Monroy, I. T.

Moreolo, M. S.

Nadal, A. L.

Nadal, L.

Nishihara, M.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Olmedo, M. I.

Osman, M.

Painchaud, Y.

Papadias, C. B.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

Paquet, C.

Petrou, C. S.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

Plant, D.

Popov, S.

Poulin, M.

Qian, D.

Raptis, L.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

Rasmussen, J.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Roudas, I.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

Takahara, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Tanaka, T.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Tao, L.

Tao, Z.

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

Vgenis, A.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

Wang, T.

Wang, Y.

Xiao, J.

Xu, X.

Yu, J.

Zeng, L.

Zhong, K. P.

Zhong, Q.

Zhou, X.

Zuo, T.

Communications Magazine IEEE (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” Communications Magazine IEEE 51(3), 50–57 (2013).
[Crossref]

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett. 22(1), 45–47 (2010).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (5)

Other (5)

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete-multi-tone for 100 Gb/s optical access network,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), Page M2I.1.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-signals Using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based Receiver,” in Proc. ECOC (2014), Post-deadline paper PD. 4.4.

C. Chen, M. Zamani, Z. Zhang, and C. Li, “Rate-adaptive coding for direct-detection of discrete multi-tones,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2014), paper M2C.2.
[Crossref]

L. Liu, Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Initial tap setup of constant modulus algorithm for polarization de-multiplexing in optical coherent receivers,” in Proc. Conf. Optical Fiber Commun. Conf. (OFC) (2009), paper OMT2.
[Crossref]

K. P. Zhong, W. Chen, Q. Sui, M. J. Wei, A. P. T. Lau, C. Lu, and L. Zeng, “Low cost 400GE transceiver for 2km optical interconnect using PAM4 and direct detection, ” in Asia Communications and Photonics Conference (ACP) (2014), paper, ATh4D.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Power spectral distribution of the detected signal in one of polarization tributaries.
Fig. 2
Fig. 2 Optical spectral spectrum diagram of the PIM-DMT signal.
Fig. 3
Fig. 3 The structure of straining symbols for MIMO channel estimation.
Fig. 4
Fig. 4 Chanel function vector as a function of polarization rotation angle α .
Fig. 5
Fig. 5 Normalized correlation ratio as a function of polarization rotation angle.
Fig. 6
Fig. 6 Receiver sensitivity penalty as a function of polarization rotation angle.
Fig. 7
Fig. 7 (a) Simulation setup of the 207.8Gbit/s PIM-DMT-DD system, the schematics of the DSP (b) in the transmitter and (c) the receiver, SSMF: standard single mode fiber, VOA: variable optical attenuator, PBC/S: polarization beam combiner/splitter.
Fig. 8
Fig. 8 (a) Normalized correlation ratio and (b) measured BER as a function of polarization rotation angle (Received power before PD = −6.5dBm).
Fig. 9
Fig. 9 BER performance as a function of 3dB bandwidth of receiver (Received power before PD = −6.5 dBm).
Fig. 10
Fig. 10 Representative spectra of PIM-DD-DMT transmission (Received power before PD = −6.5dBm), (a) optical spectrum after PBC in transmitter, optical spectrum of V-pol. after PBS in receiver (b) for a = 0°, (c) for a = 22.5°, electrical spectrum of V-pol. after PD for (d) for a = 0°, (f) for a = 22.5°.
Fig. 11
Fig. 11 (a) BER performance as a function of frequency space, (b) BER per data subcarrier (Received power before PD = −6.5dBm).
Fig. 12
Fig. 12 BER performance as a function of receiver optical power.

Tables (1)

Tables Icon

Table 1 General Simulation Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E TX (t)=( E x (t) E y (t) )=( C x + s x (t) e j( 2π f x t+ φ x ) C y + s y (t) e j( 2π f y t+ φ y ) )
H(ω)=( cosα e jε -sinα e jε sinα e jε cosα e jε )× e j 1 2 β 2 L ω 2
h(t)=( h 11 (t) h 12 (t) h 21 (t) h 22 (t) ).
E RX (t)=( E h (t) E v (t) )=( h 11 (t) E x (t)+ h 12 (t) E y (t) h 21 (t) E x (t)+ h 22 (t) E y (t) )
r h (t)= | E h (t) | 2 = | h 11 (t) E x (t)+ h 12 (t) E y (t) | 2 = | h 11 (t) C x + s x (t) | 2 + | h 12 (t) C y + s y (t) | 2 +2Re{ [ h 11 (t) C x + s x (t) e j( 2π f x t+ φ x ) ][ h 12 * (t) C y + s y (t) j( 2π f y t+ φ y ) ] }
r h-Signal | h 11 (t)( C x + s x (t) 2 C x ) | 2 + | h 12 (t)( C y + s y (t) 2 C y ) | 2 =( cosα s x (t)Re{ h 11 (t) e jε }sinα s Y (t)Re{ h 12 (t) e jε } ) +( 1 4 C x | s x (t) h 11 (t) | 2 + 1 4 C y | s y (t) h 12 (t) | 2 ) +( C x cos 2 α+ C y sin 2 α )
r h-Interference 2Re{ [ h 11 (t)( C x + s x (t) 2 C x ) e j( 2π f x t+ φ x ) ][ h 12 * (t)( C y + s y (t) 2 C y ) e j( 2π f y t+ φ y ) ] } 2 C x C y cosαsinαcos( 2πΔft+Δφ+2ε+ ϕ D ) I1 + 2Re{ [ h 11 * (t) s x (t) ][ h 12 (t) s y (t) ] 4 C x C y e j( 2πΔft+Δφ ) } I2 2Re{ ( h 11 (t) s x (t) sinα C y 2 C x + h 12 * (t) s y (t) cosα C x 2 C y ) e j( 2πΔft+Δφ+2ε+ ϕ D ) } I3
[ r h (t) r v (t) ]= h (t)[ s x (t) s y (t) ]
h'( t )=( cosαRe{ h 11 (t) e jε } sinαRe{ h 12 (t) e jε } sinαRe{ h 21 (t) e jε } cosαRe{ h 22 (t) e jε } )
H (ω)=( cos 2 α sin 2 α sin 2 α cos 2 α )Re{ e j 1 2 β 2 L ω 2 }=( cos 2 α sin 2 α sin 2 α cos 2 α )cos( β 2 L ω 2 2 )
s x(y) (t)= i= + k=0 N1 c x(y),k,i g(ti T s ) e j2π f k (ti T s )
c x(y), Nj,i = c * x(y), j,i , j=1~N-1
[ r h (t) r v (t) ]= h (t)[ s x (t) s y (t) ]+[ n h (t) n v (t) ]
[ R h,i,k R v,i,k ]= H (k)[ c x,i,k c y,i,k ]+[ N h,i,k N v,i,k ]
H (k)= H (ω)| ω=2πk f sc =[ H 11 (k) H 12 (k) H 21 (k) H 22 (k) ]
[ R h,i,k R v,i,k ] =[ H 11 (k) H 12 (k) H 21 (k) H 22 (k) ][ c x,i,k 0 ] { H ˜ 11 (k)= 1 L i=1 L R h,i,k c x,i,k H ˜ 21 (k)= 1 L i=1 L R v,i,k c x,i,k
[ R h,i,k R v,i,k ]=[ H 11 (k) H 12 (k) H 21 (k) H 22 (k) ][ 0 c y,i,k ] { H ˜ 12 (k)= 1 L i=1 L R h,i,k c y,i,k H ˜ 22 (k)= 1 L i=1 L R v,i,k c y,i,k
c x,i,k = H ˜ 22 (k) R h,i,k H ˜ 12 (k) R v,i,k H ˜ 11 (k) H ˜ 22 (k) H ˜ 12 (k) H ˜ 21 (k) + N i,k H ˜ 11 (k) H ˜ 22 (k) H ˜ 12 (k) H ˜ 21 (k) c y,i,k = H ˜ 21 (k) R h,i,k H ˜ 11 (k) R v,i,k H ˜ 11 (k) H ˜ 22 (k) H ˜ 12 (k) H ˜ 21 (k) + N i,k H ˜ 11 (k) H ˜ 22 (k) H ˜ 12 (k) H ˜ 21 (k)
N i,k = H ˜ 12 (k) N v,i,k H ˜ 22 (k) N h,i,k , N i,k = H ˜ 21 (k) N v,i,k H ˜ 11 (k) N h,i,k .

Metrics