Abstract

A detailed investigation into the use of Raman spectroscopy for determining water temperature is presented. The temperature dependence of unpolarized Raman spectra is evaluated numerically, and methods based on linear regression are used to determine the accuracy with which temperature can be obtained from Raman spectra. These methods were also used to inform the design and predict the performance of a two-channel Raman spectrometer, which can predict the temperature of mains supply water to an accuracy of ± 0.5 °C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultimate sensing resolution of water temperature by remote Raman spectroscopy

Myoung-Kyu Oh, Hoonsoo Kang, Nan Ei Yu, Bok Hyeon Kim, JoonHeon Kim, JoonSeok Lee, and Gi Woo Hyung
Appl. Opt. 54(10) 2639-2646 (2015)

New approach to remote sensing of temperature and salinity in natural water samples

C. P. Artlett and H. M. Pask
Opt. Express 25(3) 2840-2851 (2017)

Remote sensing of subsurface water temperature by Raman scattering

D. A. Leonard, B. Caputo, and F. E. Hoge
Appl. Opt. 18(11) 1732-1745 (1979)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Chang, and L. A. Young, “Seawater temperature measurement from Raman spectra,” (contract N62269–73-C-0073, sponsored by Advanced Research Projects Agency, ARPA Order 2194, 1972).
  2. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
    [Crossref]
  3. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water and electrolyte solutions,” J. Chem. Phys. 44(4), 1546–1558 (1966).
    [Crossref]
  4. D. E. Hare and C. M. Sorensen, “Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range −31.5 to 160° C,” J. Chem. Phys. 93(10), 6954–6961 (1990).
    [Crossref]
  5. C. P. Artlett and H. M. Pask, “Raman spectral analysis for remote measurement of water temperature,” Proc. SPIE 8532, 85320C (2012).
    [Crossref]
  6. G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
    [Crossref]
  7. M.-K. Oh, H. Kang, N. E. Yu, B. H. Kim, J. Kim, J. Lee, and G. W. Hyung, “Ultimate sensing resolution of water temperature by remote Raman spectroscopy,” Appl. Opt. 54(10), 2639–2646 (2015).
    [Crossref] [PubMed]
  8. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman lidar,” Appl. Opt. 51(22), 5477–5485 (2012).
    [Crossref] [PubMed]
  9. T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).
  10. S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).
  11. C. H. Chang and L. A. Young, “Remote measurement of ocean temperature from depolarization in Raman scattering,” in The use of Lasers for Hydrographic Studies, (NASA, 1975), pp. 105–112.
  12. D. A. Leonard and B. Caputo, “Raman Remote Sensing Of The Ocean Mixed-Layer Depth,” Opt. Eng. 22(3), 223288 (1983).
    [Crossref]
  13. D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18(11), 1732–1745 (1979).
    [Crossref] [PubMed]
  14. D. N. Whiteman, G. E. Walrafen, W.-H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38(12), 2614–2615 (1999).
    [Crossref] [PubMed]
  15. J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
    [Crossref]

2015 (1)

2012 (2)

2011 (1)

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

2004 (1)

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

1999 (2)

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38(12), 2614–2615 (1999).
[Crossref] [PubMed]

J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
[Crossref]

1990 (1)

D. E. Hare and C. M. Sorensen, “Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range −31.5 to 160° C,” J. Chem. Phys. 93(10), 6954–6961 (1990).
[Crossref]

1986 (1)

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[Crossref]

1983 (1)

D. A. Leonard and B. Caputo, “Raman Remote Sensing Of The Ocean Mixed-Layer Depth,” Opt. Eng. 22(3), 223288 (1983).
[Crossref]

1979 (1)

1967 (1)

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

1966 (1)

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water and electrolyte solutions,” J. Chem. Phys. 44(4), 1546–1558 (1966).
[Crossref]

Artlett, C. P.

C. P. Artlett and H. M. Pask, “Raman spectral analysis for remote measurement of water temperature,” Proc. SPIE 8532, 85320C (2012).
[Crossref]

Bunkin, A. F.

Burikov, S.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

Burikov, S. A.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

Caputo, B.

Churina, I. V.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

Dolenko, S. A.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

Dolenko, T.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

Dolenko, T. A.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

Fadeev, V.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

Fadeev, V. V.

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

Hare, D. E.

D. E. Hare and C. M. Sorensen, “Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range −31.5 to 160° C,” J. Chem. Phys. 93(10), 6954–6961 (1990).
[Crossref]

Hoge, F. E.

Hokmabadi, M. S.

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[Crossref]

Hooper, W. P.

J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
[Crossref]

Hyung, G. W.

James, J. E.

J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
[Crossref]

Kang, H.

Kim, B. H.

Kim, J.

Klinkov, V. K.

Lednev, V. N.

Lee, J.

Leonard, D. A.

Lin, C. S.

J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
[Crossref]

Lushnikov, D. L.

Marchenko, A. V.

Melfi, S. H.

Morozov, E. G.

Oh, M.-K.

Pask, H. M.

C. P. Artlett and H. M. Pask, “Raman spectral analysis for remote measurement of water temperature,” Proc. SPIE 8532, 85320C (2012).
[Crossref]

Pershin, S. M.

Sabirov, A.

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

Sorensen, C. M.

D. E. Hare and C. M. Sorensen, “Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range −31.5 to 160° C,” J. Chem. Phys. 93(10), 6954–6961 (1990).
[Crossref]

Walrafen, G. E.

D. N. Whiteman, G. E. Walrafen, W.-H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38(12), 2614–2615 (1999).
[Crossref] [PubMed]

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water and electrolyte solutions,” J. Chem. Phys. 44(4), 1546–1558 (1966).
[Crossref]

Whiteman, D. N.

Yang, W. H.

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[Crossref]

Yang, W.-H.

Yu, N. E.

Yulmetov, R. N.

Appl. Opt. (4)

EARSeL eProceedings. (2)

T. Dolenko, S. Burikov, A. Sabirov, and V. Fadeev, “Remote determination of temperature and salinity in presence of dissolved organic matter in natural waters using laser spectroscopy,” EARSeL eProceedings. 10(2), 159–165 (2011).

S. A. Burikov, I. V. Churina, S. A. Dolenko, T. A. Dolenko, and V. V. Fadeev, “New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy,” EARSeL eProceedings. 3(3), 298–305 (2004).

J. Atmos. Ocean. Technol. (1)

J. E. James, C. S. Lin, and W. P. Hooper, “Simulation of Laser-Induced Light Emissions from Water and Extraction of Raman Signal,” J. Atmos. Ocean. Technol. 16(3), 394–401 (1999).
[Crossref]

J. Chem. Phys. (4)

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47(1), 114–126 (1967).
[Crossref]

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water and electrolyte solutions,” J. Chem. Phys. 44(4), 1546–1558 (1966).
[Crossref]

D. E. Hare and C. M. Sorensen, “Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range −31.5 to 160° C,” J. Chem. Phys. 93(10), 6954–6961 (1990).
[Crossref]

Opt. Eng. (1)

D. A. Leonard and B. Caputo, “Raman Remote Sensing Of The Ocean Mixed-Layer Depth,” Opt. Eng. 22(3), 223288 (1983).
[Crossref]

Proc. SPIE (1)

C. P. Artlett and H. M. Pask, “Raman spectral analysis for remote measurement of water temperature,” Proc. SPIE 8532, 85320C (2012).
[Crossref]

Other (2)

C. H. Chang and L. A. Young, “Remote measurement of ocean temperature from depolarization in Raman scattering,” in The use of Lasers for Hydrographic Studies, (NASA, 1975), pp. 105–112.

C. H. Chang, and L. A. Young, “Seawater temperature measurement from Raman spectra,” (contract N62269–73-C-0073, sponsored by Advanced Research Projects Agency, ARPA Order 2194, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for collection of water Raman spectra.
Fig. 2
Fig. 2 (a) Unpolarized Raman spectra of RO filtered water with varying temperature. (b) Variation in unpolarized Raman signal intensity in response to temperature change.
Fig. 3
Fig. 3 Temperature sensitivity of the mean-scaled two-color ratio for unpolarized Raman spectra with varying shift positions. Wavenumber pairs A and B are marked.
Fig. 4
Fig. 4 Temperature sensitivity of the mean-scaled two-color ratio for all pairs of wavenumber channel centers (200 cm−1 channel widths).
Fig. 5
Fig. 5 Map of RMS temperature errors computed for all pairs of wavenumber shifts (data interval 2 cm−1).
Fig. 6
Fig. 6 RMS temperature error map computed for all pairs of wavenumber channel centers (200 cm−1 channel widths).
Fig. 7
Fig. 7 Simple two-channel experimental setup for remote temperature sensing.
Fig. 8
Fig. 8 Temperature dependence of channel 1 (top) and channel 2 (bottom) PMT signals (averaged over 512 pulses) for two-color channels.
Fig. 9
Fig. 9 (a) Ratio of signals from the 2 Raman channels as a function of measured reference temperature and (b) Predicted temperatures as a function of measured temperatures (r2 = 0.98).

Tables (1)

Tables Icon

Table 1 Effect of channel width on mean-scaled ratio temperature sensitivity and integrated signal intensities (channels centered on the “B” wavenumber pair).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Meanscaled twocolor ratio temperature sensitivity= dR dT 1 mean(R)
Twocolor ratio=a×T+b

Metrics