Abstract

Upconversion nanoparticles (UCNPs) provide an ideal platform for achieving multifunction, such as multimodal imaging, sensing, therapy, etc., mainly by combining with other nanomaterials to construct complicated heterogeneous nanostructures. Multifunctional integration on a simple single-phase structure still is an open question and poses a big challenge. Here we show that small-sized NaGdF4:Yb3+, Er3+ UCNPs (~7.5 nm) can simultaneously possess upconversion luminescence (UCL), temperature sensing, paramagnetic and photothermal conversion properties, endowing them great potential for photothermal treatments with real-time imaging and temperature monitoring. Effects of Yb3+ concentrations, nanoparticle sizes and core/shell structures on the light-to-heat conversion capability of UCNPs were also investigated, and the results were discussed on the basis of the variation in absorption rates and non-radiative relaxation probabilities of UCNPs. There is a competition between UCL and light-to-heat conversion processes. Higher UCL efficiency and enhanced photothermal conversion properties can be realized on UCNPs with the active-core/active-shell structure due to enhanced absorption rates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

Enhanced upconversion fluorescence and altered particle size of β-NaGdF4:Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions

Wei Zhu, Qixiao Wu, Suling Zhao, Zhiqin Liang, Yongxin Yang, Junjie Zhang, and Zheng Xu
Opt. Mater. Express 6(9) 3001-3007 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  2. X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
    [Crossref] [PubMed]
  3. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [Crossref] [PubMed]
  4. Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
    [Crossref] [PubMed]
  5. A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
    [Crossref] [PubMed]
  6. J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
    [Crossref]
  7. F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
    [Crossref] [PubMed]
  8. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  9. C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
    [Crossref] [PubMed]
  10. B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
    [Crossref]
  11. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
    [Crossref] [PubMed]
  12. A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
    [Crossref] [PubMed]
  13. Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
    [Crossref] [PubMed]
  14. Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
    [Crossref] [PubMed]
  15. E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
    [Crossref] [PubMed]
  16. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
    [Crossref] [PubMed]
  17. H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
    [Crossref] [PubMed]
  18. H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
    [Crossref] [PubMed]
  19. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]
  20. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
    [Crossref] [PubMed]
  21. C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
    [Crossref]
  22. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
    [Crossref] [PubMed]
  23. A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
    [Crossref]
  24. H. S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24(21), 12123–12125 (2008).
    [Crossref] [PubMed]
  25. D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
    [Crossref]
  26. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  27. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  28. S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
    [Crossref]
  29. L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
    [Crossref] [PubMed]
  30. P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
    [Crossref] [PubMed]
  31. H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
    [Crossref] [PubMed]
  32. F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

2014 (2)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

2013 (4)

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

2012 (9)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

2011 (5)

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

2010 (5)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

2009 (3)

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

2008 (3)

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
[Crossref] [PubMed]

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

H. S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24(21), 12123–12125 (2008).
[Crossref] [PubMed]

2006 (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Bai, X.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Bednarkiewicz, A.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Benayas, A.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Bettinelli, M.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Bi, S.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Braun, G. B.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Caamaño, A. J.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Carrasco, E.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Chen, C. J.

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chen, D. H.

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chen, H.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Chen, M.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

Chen, Z.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Choi, H. C.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Chooi, J. Y.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Choudhury, D.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Choyke, P. L.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
[Crossref] [PubMed]

Cui, D.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

del Rosal, B.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Di, Y.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Dong, Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

Du, C.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Everts, M.

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

Feng, W.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Gagor, A.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Galanzha, E. I.

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

Gao, H.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Gao, Y.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

García Solé, J.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Han, S.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hao, J. H.

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

Haro-Gonzalez, P.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Haro-González, P.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Hu, J.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Huang, W.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Iglesias-de la Cruz, M. C.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Jang, H. S.

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

Jaque, D.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Jiang, F.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Jiang, J. Q.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

Juarranz, A.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kar, A. K.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Kepinski, L.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Kobayashi, H.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
[Crossref] [PubMed]

Kong, X. G.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Krajczyk, L.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Kurnatowska, M.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Lee, S. H.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Li, C.

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Li, D.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Li, D. D.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

Li, F.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Lim, K.

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

Liu, K.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Liu, Q.

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Liu, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Liu, X. M.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Longmire, M.

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
[Crossref] [PubMed]

Lu, S. Z.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Maestro, L. M.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Mahalingam, V.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Mao, C.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martín Rodríguez, E.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Martinez Maestro, L.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martínez Maestro, L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Mi, C.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Ming, T.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Moon, H. K.

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Morgan, C. G.

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Moskovits, M.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Na, H.

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Nguyen, H. T.

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nyk, M.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Pallaoro, A.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Paterson, L.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Plaza, J. L.

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

Qian, H. S.

H. S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24(21), 12123–12125 (2008).
[Crossref] [PubMed]

Ramiro, J.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

Ramsay, W. T.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Rodriguez Sevilla, P.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Samoc, M.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Santacruz-Gomez, K.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Shao, Q. Y.

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

Shashkov, E. V.

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

Shen, H.

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

Shi, Y.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Solé, J. G.

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Song, H. W.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Song, K.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Strek, W.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Stucky, G. D.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Sun, B.

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

Sun, J.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Sun, Y.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Sun, Y. J.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Sun, Z.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Tang, M.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Tian, Q.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Tran, K. K.

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, J.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Wang, L. P.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

Wang, M.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Wang, Y.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Wawrzynczyk, D.

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Woo, K.

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

Wu, D.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Wu, X.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Wu, Y.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Xia, A.

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

Xiao, J. J.

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Xu, S.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Xu, Z.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Yang, B.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Yang, Q. B.

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

Yang, S.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Yang, T.

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Yang, Y. F.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Yi, T.

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Yu, Y.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zeng, S. J.

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Zhang, H.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Zhang, J.

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Zhang, X.

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Zhang, Y.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

H. S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24(21), 12123–12125 (2008).
[Crossref] [PubMed]

Zhao, C.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

Zhao, D.

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Zhao, J. W.

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

Zharov, V. P.

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

Zhu, M.

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Zou, R.

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

ACS Nano (4)

Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, X. Zhang, T. Yi, D. Wu, and F. Li, “18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly,” ACS Nano 5(4), 3146–3157 (2011).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo,” ACS Nano 5(12), 9761–9771 (2011).
[Crossref] [PubMed]

H. K. Moon, S. H. Lee, and H. C. Choi, “In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes,” ACS Nano 3(11), 3707–3713 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, “The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles,” Adv. Funct. Mater. 19(15), 2424–2429 (2009).

Adv. Mater. (2)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, and J. Hu, “Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells,” Adv. Mater. 23(31), 3542–3547 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Biomaterials (2)

H. T. Nguyen, K. K. Tran, B. Sun, and H. Shen, “Activation of inflammasomes by tumor cell death mediated by gold nanoshells,” Biomaterials 33(7), 2197–2205 (2012).
[Crossref] [PubMed]

A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, and F. Li, “Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance,” Biomaterials 33(21), 5394–5405 (2012).
[Crossref] [PubMed]

Cancer Lett. (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239(1), 129–135 (2006).
[Crossref] [PubMed]

Chem. Eng. J. (1)

C. J. Chen and D. H. Chen, “Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material,” Chem. Eng. J. 180, 337–342 (2012).
[Crossref]

Chem. Soc. Rev. (2)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Eur. J. Inorg. Chem. (1)

J. W. Zhao, X. M. Liu, D. Cui, Y. J. Sun, Y. Yu, Y. F. Yang, C. Du, Y. Wang, K. Song, K. Liu, S. Z. Lu, X. G. Kong, and H. Zhang, “A facile approach to fabrication of hexagonal-phase NaYF4:Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence,” Eur. J. Inorg. Chem. 2010(12), 1813–1819 (2010).
[Crossref]

J. Mater. Chem. (2)

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. P. Wang, and H. W. Song, “Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193–6200 (2011).
[Crossref]

S. J. Zeng, J. J. Xiao, Q. B. Yang, and J. H. Hao, “Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties,” J. Mater. Chem. 22(19), 9870–9874 (2012).
[Crossref]

J. Phys. Chem. C (1)

D. D. Li, Q. Y. Shao, Y. Dong, and J. Q. Jiang, “Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles,” J. Phys. Chem. C 118(39), 22807–22813 (2014).
[Crossref]

Langmuir (1)

H. S. Qian and Y. Zhang, “Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence,” Langmuir 24(21), 12123–12125 (2008).
[Crossref] [PubMed]

Nano Lett. (2)

E. V. Shashkov, M. Everts, E. I. Galanzha, and V. P. Zharov, “Quantum dots as multimodal photoacoustic and photothermal contrast agents,” Nano Lett. 8(11), 3953–3958 (2008).
[Crossref] [PubMed]

F. Zhang, G. B. Braun, A. Pallaoro, Y. Zhang, Y. Shi, D. Cui, M. Moskovits, D. Zhao, and G. D. Stucky, “Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy,” Nano Lett. 12(1), 61–67 (2012).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond.) 3(5), 703–717 (2008).
[Crossref] [PubMed]

Nanoscale (5)

D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, “Nanoparticles for photothermal therapies,” Nanoscale 6(16), 9494–9530 (2014).
[Crossref] [PubMed]

L. M. Maestro, P. Haro-González, B. del Rosal, J. Ramiro, A. J. Caamaño, E. Carrasco, A. Juarranz, F. Sanz-Rodríguez, J. G. Solé, and D. Jaque, “Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows,” Nanoscale 5(17), 7882–7889 (2013).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

H. Na, K. Woo, K. Lim, and H. S. Jang, “Rational morphology control of β-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping,” Nanoscale 5(10), 4242–4251 (2013).
[Crossref] [PubMed]

C. Mi, J. Zhang, H. Gao, X. Wu, M. Wang, Y. Wu, Y. Di, Z. Xu, C. Mao, and S. Xu, “Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells,” Nanoscale 2(7), 1141–1148 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

A. Bednarkiewicz, D. Wawrzynczyk, A. Gagor, L. Kepinski, M. Kurnatowska, L. Krajczyk, M. Nyk, M. Samoc, and W. Strek, “Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing,” Nanotechnology 23(14), 145705 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[Crossref] [PubMed]

Small (2)

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. Martinez Maestro, B. del Rosal, K. Santacruz-Gomez, M. C. Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. Rodriguez Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) TEM image and (b) XRD patterns of NaGdF4:Yb3+, Er3+ UCNPs. The inset of (a) gives the histogram of particle size distribution, which was obtained by compiling more than 200 particles.
Fig. 2
Fig. 2 (a) Upconversion emission spectra of ~7.5nm NaGdF4:Yb3+, Er3+ UCNPs obtained at various temperatures, and the inset gives the UCL digital photo of the nanoparticle dispersion in cyclohexane. (b) A plot of ln(I H/I S) vs 1/T, the calculated ln(I H/I S) values and the corresponding temperatures of NaGdF4:Yb3+, Er3+ solid powders under the 975 nm laser irradiation were also marked (star). (c) The temperature changes of the pure cyclohexane (circle), the cyclohexane dispersion of undoped NaGdF4 nanoparticles (square) and the cyclohexane dispersion of NaGdF4:0.2Yb3+, 0.02Er3+ UCNPs (triangle and star) as a function of irradiation time. Two temperature rise curves of NaGdF4:Yb3+, Er3+ at same measuring conditions are shown to verify the stability and repeatability of their heating capability. (d) Magnetization as a function of an applied filed for NaGdF4:Yb3+, Er3+ UCNPs.
Fig. 3
Fig. 3 (a) The temperature rise of the cyclohexane dispersion and (b) UCL spectra of NaGdF4:Yb3+, Er3+ UCNPs with various Yb3+ concentrations.
Fig. 4
Fig. 4 TEM images of (a) NaGd0.58Y0.2:0.2Yb, 0.02Er (~10.7 nm), (b) NaGd0.39Y0.39:0.2Yb, 0.02Er (~15.3 nm) and (c) NaYF4:0.2Yb, 0.02Er (~22.4 nm) UCNPs; (d) The temperature rise of the cyclohexane dispersion of UCNPs with various sizes and (e) the corresponding UCL spectra.
Fig. 5
Fig. 5 TEM images of NaGdF4:Yb3+, Er3+/NaGdF4 active-core/inert-shell (~11.7 nm) and NaGdF4:Yb3+, Er3+/NaGdF4: 0.4 Yb3+ active-core/active-shell (12.1 nm) UCNPs.
Fig. 6
Fig. 6 (a) UCL spectra of core-only NaGdF4:0.2Yb3+, 0.02Er3+, NaGdF4:0.2Yb3+, 0.02Er3+@NaGdF4 active-core/inert-shell and NaGdF4:0.2Yb3+, 0.02Er3+@NaGdF4:0.4Yb3+ active-core/active-shell UCNPs; (b) the temperature rise of the cyclohexane dispersion and (c) the temperature rise of solid-state powders for three types of UCNPs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I H / I S = C exp ( Δ E / k T )
d R / d T = R ( Δ E / k T 2 )

Metrics