Abstract

An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm2 SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE11, TE21, TE31, TE41, TM11, TM12) in a 1.4 × 0.22μm2 multimode SOI waveguide and the six modes (like the LP01, LP11a, LP11b modes in a few-mode fiber) in a 3 × 3μm2 SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of optical fiber-based LP01 ↔ LP02 mode converters for the O-, S-, and C-Band

Hakim Mellah, Xiupu Zhang, and Dongya Shen
Appl. Opt. 54(17) 5568-5575 (2015)

Bimodal grating coupler design on SOI technology for mode division multiplexing at 1550 nm

David Garcia-Rodriguez, Juan L. Corral, Amadeu Griol, and Roberto Llorente
Opt. Express 26(15) 19445-19455 (2018)

Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers

Daigao Chen, Xi Xiao, Lei Wang, Yu Yu, Wen Liu, and Qi Yang
Opt. Express 23(9) 11152-11159 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [Crossref] [PubMed]
  3. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  4. Y. Yadin and M. Orenstein, “Parallel optical interconnects over multimode waveguides,” J. Lightwave Technol. 24(1), 380–386 (2006).
    [Crossref]
  5. D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).
  6. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  7. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
    [Crossref] [PubMed]
  8. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  9. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  10. J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
    [Crossref]
  11. W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
    [Crossref] [PubMed]
  12. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
    [Crossref]
  13. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
    [Crossref]
  14. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  15. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  16. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  17. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  18. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  19. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
    [Crossref]
  20. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
    [Crossref]
  21. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  22. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
    [Crossref]
  23. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  24. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  25. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  26. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  27. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Proc. OFC 2011, Mar., pp. 1–3, paper PDPB10.
  28. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Proc. OFC 2011, Los Angeles, CA, Mar., pp. 1–3, paper PDPB9.
  29. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [Crossref] [PubMed]
  30. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC) 2011, OWA4 (2011).
    [Crossref]
  31. A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
    [Crossref]
  32. S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
    [Crossref] [PubMed]
  33. S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
    [Crossref] [PubMed]
  34. A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
    [Crossref]
  35. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
    [Crossref] [PubMed]
  36. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [Crossref]
  37. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  38. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  39. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
    [Crossref] [PubMed]
  40. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
    [Crossref]
  41. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  42. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  43. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [Crossref] [PubMed]
  44. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  45. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  46. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  47. FIMMWAVE/FIMMPROP, Photon Design Ltd. http://www.photond.com .
  48. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [Crossref]
  49. A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
    [Crossref]

2015 (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
[Crossref] [PubMed]

2014 (10)

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

2013 (9)

J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (5)

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2008 (1)

2006 (2)

2005 (3)

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
[Crossref] [PubMed]

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
[Crossref] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

2003 (1)

2002 (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

1996 (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Al Amin, A.

Alic, N.

Almeida, V. R.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Basak, J.

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bolle, C. A.

Bowers, J. E.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Chang, S. H.

Chen, C. P.

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, H.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Chen, P.

Chen, S.

Chen, W.

Chen, X.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Cheung, S. T. S.

Chormaic, S. N.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Chung, H. S.

Da Ros, F.

Dadap, J. I.

Dai, D.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Ding, Y.

Djordjevic, S. S.

Doan, M. T.

Driscoll, J. B.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Essiambre, R. J.

Essiambre, R.-J.

Fainman, Y.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fontaine, N. K.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Frawley, M.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gao, G.

Gnauck, A. H.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Green, W. M. J.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

Greenberg, M.

Grote, R. R.

Guan, B.

Han, C.

Hanzawa, N.

He, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

Hoepfner, C.

Hu, T.

Huang, B.

Huang, Y. Z.

Ikeda, K.

Ishizaka, Y.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Jiang, G.

Jiang, X.

Joblin, A.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Kawaguchi, Y.

Kim, B. Y.

Kim, K.

Kim, Y. K.

Kimerling, L. C.

Koonen, A. M. J.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Koshiba, M.

Lee, J. C.

Lee, J. H.

Lee, K. K.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, A.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Li, Y.

Li, Z.

Liao, L.

Lim, D. R.

Lingle, R.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Liu, H.-F.

Love, J. D.

N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
[Crossref] [PubMed]

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Matsui, T.

McCurdy, A.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Oh, W.-Y.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Orenstein, M.

Osgood, R. M.

Ou, H.

Pan, D.

Panepucci, R. R.

Park, K. J.

Peckham, D. W.

Petcu-Colan, A.

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Peucheret, C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Poon, A. W.

Qiu, H.

Randel, S.

Raz, O.

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Ryf, R.

Saitoh, K.

Sakamoto, T.

Saperstein, R. E.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Shang, K.

Shao, H.

Shi, Y.

Shieh, W.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Sierra, A.

Souhan, B.

Stein, A.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

Tang, Y.

Tsang, H. K.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Tsujikawa, K.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Uematsu, T.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Vance, R. W. C.

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Wada, K.

Wang, J.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

Wang, P.

Wang, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Winzer, P. J.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xiao, X.

Xing, J.

Xu, J.

Yadin, Y.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yamamoto, F.

Yang, J.

Yang, Y. D.

Yap, K. P.

Ye, J.

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

Yoo, S. J. B.

Yu, H.

Yu, J.

Yu, P.

Yu, Y.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

IEEE Photon. Soc. News. (1)

D. Dai and J. Wang, “Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects,” IEEE Photon. Soc. News. 28, 8–14 (2014).

IEEE Photonics Technol. Lett. (2)

A. Li, J. Ye, X. Chen, and W. Shieh, “Fabrication of a low-loss fused fiber spatial-mode coupler for few-mode transmission,” IEEE Photonics Technol. Lett. 25(20), 1985–1988 (2013).
[Crossref]

A. M. J. Koonen, H. Chen, and O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Nonlinear Opt. Phys. Mater. (1)

A. Petcu-Colan, M. Frawley, and S. N. Chormaic, “Tapered few-mode fibers: mode evolution during fabrication and adiabaticity,” J. Nonlinear Opt. Phys. Mater. 20(03), 293–307 (2011).
[Crossref]

Laser Photonics Rev. (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), L1–L18 (2014).
[Crossref]

Nanophoton. (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects,” Nanophoton. 3(4-5), 283–311 (2014).
[Crossref]

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Express (17)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
[Crossref] [PubMed]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission,” Opt. Express 22(24), 29321–29330 (2014).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, R. Ryf, N. K. Fontaine, C. Han, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers,” Opt. Express 23(6), 7164–7172 (2015).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13(23), 9381–9387 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. D. Love, R. W. C. Vance, and A. Joblin, “Asymmetric, adiabatic multipronged planar splitters,” Opt. Quantum Electron. 28(4), 353–369 (1996).
[Crossref]

Prog. Electromagnetics Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[Crossref] [PubMed]

Other (6)

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), 166–168.
[Crossref]

D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, (Guangzhou, China, 2012), ATh3B.3.
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in Proc. OFC 2011, Mar., pp. 1–3, paper PDPB10.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Proc. OFC 2011, Los Angeles, CA, Mar., pp. 1–3, paper PDPB9.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC) 2011, OWA4 (2011).
[Crossref]

FIMMWAVE/FIMMPROP, Photon Design Ltd. http://www.photond.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The guided-modes in (a) a multimode SOI nanowire waveguide; (b) few-mode fiber (LP01, LP11a, LP11b modes).
Fig. 2
Fig. 2 (a) Schematic configuration of the present mode converter based on an inverse taper for multimode silicon photonic integrated circuits; (b) cross section of a SiN strip waveguide at the end connecting with a few-mode fiber; (c) cross section at the end of the silicon nano-tip; (d) cross section of the multimode silicon waveguide.
Fig. 3
Fig. 3 The six guided-modes supported by the SiN strip waveguide (like the LP01, LP11a, LP11b modes in a few-mode fiber [24]).
Fig. 4
Fig. 4 The coupling ratio of the i-th mode between the SiN strip waveguide [see Fig. 2(b)] and the SiN waveguide with a silicon nano-tip [see Fig. 2(c)] as the tip width w tip varies from 0.03μm to 0.15μm. i = 1, …, 6.
Fig. 5
Fig. 5 (a) The calculated effective indices for the guided-modes of silicon waveguide [shown in Fig. 2(d)] as the silicon core width w Si varies from 50nm to ~1.6μm; (b) the enlarged view for the part of 1.92<n eff<1.98.
Fig. 6
Fig. 6 The six lowest guided-modes in the SOI nanowire waveguide when (a) w Si = 60nm; (b) w Si = 1.4μm.
Fig. 7
Fig. 7 The calculated hybridization ratio γ x = Ex 2/(Ex 2 + Ey 2) for an SOI nanowire waveguide as the silicon core width w Si varies from 50nm to ~1.6μm.
Fig. 8
Fig. 8 The calculated mode excitation ratio η jq of all the guided-modes (q = 1, 2, ...) when the j -th guided mode is launched at the input end of the i -th segment when (a) i = 1, wi 1 = 0.06μm, wi 2 = 0.1μm, and j = 3; (b) i = 2, wi 1 = 0.1μm, wi 2 = 0.2μm, and j = 3; (c) i = 3, wi 1 = 0.2μm, wi 2 = 0.3μm, and j = 3; (d) i = 4, wi 1 = 0.3μm, wi 2 = 0.4μm, and j = 4; (e) i = 5, wi 1 = 0.4μm, wi 2 = 0.568μm, and j = 6; (f) i = 6, wi 1 = 0.578μm, wi 2 = 0.67μm, and j = 6; (g) i = 7, wi 1 = 0.67μm, wi 2 = 0.78μm, and j = 6; (h) i = 8, wi 1 = 0.78μm, wi 2 = 0.81μm, and j = 4; (i) i = 9, wi 1 = 0.81μm, wi 2 = 0.84μm, and j = 4; (j) i = 10, wi 1 = 0.84μm, wi 2 = 0.94μm, and j = 4; (k) i = 11, wi 1 = 0.94μm, wi 2 = 1.08μm, and j = 5; (l) i = 12, wi 1 = 1.08μm, wi 2 = 1.24μm, and j = 4; (m) i = 13, wi 1 = 1.24μm, wi 2 = 1.27μm, and j = 6; (n) i = 14, wi 1 = 1.27μm, wi 2 = 1.32μm, and j = 6; (o) i = 15, wi 1 = 1.32μm, wi 2 = 1.4μm, and j = 6.
Fig. 9
Fig. 9 Top view of the designed inverse taper with 15 segments for the mode converter.
Fig. 10
Fig. 10 The calculated mode excitation ratios of all the guided-modes with the j -th guided-mode launched at the input end of the inverse taper (see the inset in Fig. 9(a)) as the scale factor ρ increases from 1.0 to 5.0. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.
Fig. 11
Fig. 11 The simulated light propagation in the designed inverse taper when the j-th guided-mode is launched. (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4; (e) j = 5; (f) j = 6.
Fig. 12
Fig. 12 The calculated mode excitation ratio η 33 with the 3-rd guided-mode launched at the input end of the inverse taper as the scale factor ρ increases from 1.0 to 5.0. The wavelength λ = 1540, 1550, 1560nm.

Tables (1)

Tables Icon

Table 1 The determined parameters (wi 1, wi 2, Li ) for all the segments of the inverse taper.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ x = S | E x 2 |d x d y S | E x 2 |d x d y + S | E y 2 |d x d y ,

Metrics