Abstract

In this work, a comprehensive study of the bending effect, which remains one of the most critical challenges during deep-hole drilling, was conducted. The experimental statistics indicate that polarization is not the main factor in bending, but the deviation of the hole tends to be perpendicular to the polarization direction. Also, the dynamic ablated material/plasma was studied. Straight microholes were obtained by extending the interval between laser pulses to avoid dynamic ablated material existing in the millisecond time domain. Therefore, we speculated that the disturbance of the laser beam at the dynamic ablated aerosol, which have not sufficiently dispersed in the millisecond domain, is the main mechanism of bending. However, to more efficiently reduce the disturbance factor, a rough vacuum environment was applied; and the bending effect was also eliminated. The critical pressure for eliminating bending was about 2 × 104 Pa that is about one order of magnitude lower than the atmosphere. The fabricated high-quality microhole arrays without bending show that the proposed drilling method is convenient and efficient with high repeatability and controllability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu

Qinxin Wang, Anmin Chen, Suyu Li, Hongxia Qi, Ying Qi, Zhan Hu, and Mingxing Jin
Appl. Opt. 54(27) 8235-8240 (2015)

Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling

L. S. Jiao, E.Y.K. Ng, H. Y. Zheng, and Y. L. Zhang
Opt. Express 23(4) 4927-4934 (2015)

Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses

Ran An, Yan Li, Yanping Dou, Hong Yang, and Qihuang Gong
Opt. Express 13(6) 1855-1859 (2005)

References

  • View by:
  • |
  • |
  • |

  1. E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).
  2. Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
    [Crossref] [PubMed]
  3. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
    [Crossref]
  4. L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19(18), 17591–17598 (2011).
    [Crossref] [PubMed]
  5. H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
    [Crossref]
  6. S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
    [Crossref]
  7. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
    [Crossref]
  8. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
    [Crossref] [PubMed]
  9. T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).
  10. S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147–27154 (2012).
    [Crossref] [PubMed]
  11. S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
    [Crossref]
  12. L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927–4934 (2015).
    [Crossref] [PubMed]
  13. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
    [Crossref]
  14. Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
    [Crossref]
  15. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
    [Crossref]
  16. S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
    [Crossref]
  17. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
    [Crossref]
  18. J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
    [Crossref]
  19. D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19(25), 25632–25642 (2011).
    [Crossref] [PubMed]
  20. J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
    [Crossref]
  21. B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
    [Crossref]

2015 (2)

L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23(4), 4927–4934 (2015).
[Crossref] [PubMed]

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

2014 (1)

S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
[Crossref]

2013 (2)

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

2012 (1)

2011 (4)

S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
[Crossref]

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19(18), 17591–17598 (2011).
[Crossref] [PubMed]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19(25), 25632–25642 (2011).
[Crossref] [PubMed]

2010 (3)

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
[Crossref] [PubMed]

2007 (1)

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

2004 (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

2001 (2)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

2000 (2)

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

1999 (1)

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

1997 (1)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

Abolghasemi, L.

S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
[Crossref]

Ashkenasi, D.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

Bai, Z. X.

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Baudach, S.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

Bonse, J.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

Bukin, O. A.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Bykova, E. E.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

Chen, M.

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Choi, H. W.

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Dausinger, F.

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Döring, S.

Esser, D.

Fallnich, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Farson, D.

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Forsman, A. C.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

Garnov, S. V.

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Geints, Y. E.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Golik, S. S.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Gottmann, J.

Günther, D.

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Heiroth, S.

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Heisler, F.

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

Herman, P. R.

S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19(25), 25632–25642 (2011).
[Crossref] [PubMed]

Hoppe, M. L.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

Hu, X.

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Jiang, J.

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Jiang, L.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19(18), 17591–17598 (2011).
[Crossref] [PubMed]

Jiao, L. S.

Kabanov, A. M.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Kamlage, G.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Karimelahi, S.

S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
[Crossref]

Kautek, W.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

Klimentov, S. M.

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Koch, J.

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Kononenko, T. V.

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Konov, V. I.

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Krüger, J.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

Lee, L. J.

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Lei, S. L.

S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
[Crossref]

Li, G.

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Li, J.

Li, X. W.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Lippert, T.

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Lu, Y. F.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Lundgren, E. H.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

Momma, C.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Moreno, K. A.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

Ng, E. Y. K.

Nikroo, A.

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

Nolte, S.

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147–27154 (2012).
[Crossref] [PubMed]

S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
[Crossref] [PubMed]

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Ostendorf, A.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Rezaei, S.

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

Richardson, M.

S. Döring, J. Szilagyi, S. Richter, F. Zimmermann, M. Richardson, A. Tünnermann, and S. Nolte, “Evolution of hole shape and size during short and ultrashort pulse laser deep drilling,” Opt. Express 20(24), 27147–27154 (2012).
[Crossref] [PubMed]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

Richter, S.

Rosenfeld, A.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

Szilagyi, J.

Tao, S.

S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
[Crossref]

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

Tönshoff, H. K.

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Tünnermann, A.

Ullsperger, T.

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

von Alvensleben, F.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Wähmer, M.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

Wang, S.

L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19(18), 17591–17598 (2011).
[Crossref] [PubMed]

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Welling, H.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Wu, B. X.

S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
[Crossref]

Xia, B.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Xiao, H.

Yan, X. L.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Yang, C.

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Yang, J.

Zemlyanov, A. A.

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Zhang, Y. L.

Zhao, L.

Zhao, W. W.

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

Zheng, H. Y.

Zimmermann, F.

Anal. Chem. (1)

Z. Fei, X. Hu, H. W. Choi, S. Wang, D. Farson, and L. J. Lee, “Micronozzle array enhanced sandwich electroporation of embryonic stem cells,” Anal. Chem. 82(1), 353–358 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. E. Geints, A. M. Kabanov, A. A. Zemlyanov, E. E. Bykova, O. A. Bukin, and S. S. Golik, “Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation,” Appl. Phys. Lett. 99(18), 181114 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process. 65(4–5), 367–373 (1997).
[Crossref]

S. Karimelahi, L. Abolghasemi, and P. R. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys., A Mater. Sci. Process. 114(1), 91–111 (2014).
[Crossref]

B. Xia, L. Jiang, X. W. Li, X. L. Yan, W. W. Zhao, and Y. F. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys., A Mater. Sci. Process. 119(1), 61–68 (2015).
[Crossref]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999).
[Crossref]

Appl. Surf. Sci. (2)

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555–560 (2000).
[Crossref]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183(3-4), 151–164 (2001).
[Crossref]

Fusion Sci. Technol. (1)

E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51(4), 576–580 (2007).

IEEE J. Quantum Electron. (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40(1), 57–68 (2004).
[Crossref]

J. Appl. Phys. (1)

S. Tao, B. X. Wu, and S. L. Lei, “Study of laser beam propagation in microholes and the effect on femtosecond laser micromachining,” J. Appl. Phys. 109(12), 123506 (2011).
[Crossref]

J. Laser Appl. (1)

H. K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, and G. Kamlage, “Microdrilling of metals with ultrashort laser pulses,” J. Laser Appl. 12(1), 23–27 (2000).
[Crossref]

Laser Phys. (1)

T. V. Kononenko, V. I. Konov, S. V. Garnov, S. M. Klimentov, and F. Dausinger, “Dynamics of Deep Short Pulse Laser Drilling: Ablative Stages and Light Propagation,” Laser Phys. 11(3), 343–351 (2001).

Opt. Express (5)

Opt. Rev. (1)

J. Jiang, M. Chen, Z. X. Bai, C. Yang, and G. Li, “Influence of polarization on the hole formation with picosecond laser,” Opt. Rev. 20(6), 496–499 (2013).
[Crossref]

Phys. Procedia (1)

S. Döring, T. Ullsperger, F. Heisler, S. Richter, A. Tünnermann, and S. Nolte, “Hole formation process in ultrashort pulse laser percussion drilling,” Phys. Procedia 41, 431–440 (2013).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

J. Koch, S. Heiroth, T. Lippert, and D. Günther, “Femtosecond laser ablation: Visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65(11), 943–949 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic illustration of the experimental setup. Plano-convex lens: f = 100 mm, Filter 1: 300 nm ~700 nm pass-through, Filter 2: 632.8 nm ± 10 nm pass-through.
Fig. 2
Fig. 2 (a) Images of the longitudinal section of the evolution of a microhole during the drilling process. The number of pulses increased from 100 to 3,000 for a pulse energy of 30 μJ at a repetition rate of 1 kHz. (b) The entrance of the microhole on the sample surface. (c) The clear direction of the bending tip in the xy-plane.
Fig. 3
Fig. 3 Histogram of the angle θ which is between orientation of the bending and y-axis for 100 microholes drilled with a linearly polarized laser parallel to the y-axis (a), perpendicular to the y-axis (b), and a circularly polarized laser (c) respectively at 2,000 pulses. The (d), (e), and (f) are part of the microholes corresponding to (a), (b), and (c), respectively. The energy is about 30 μJ/pulse.
Fig. 4
Fig. 4 The plasma expansion for the first pulse and 200th pulse at a laser pulse energy of 30 μJ.
Fig. 5
Fig. 5 The directly visualized vapor cloud and ablated material in the millisecond domain by the light scattering image method. The energy is about 30 μJ/pulse.
Fig. 6
Fig. 6 The microholes drilled with 3,000 pulses for a pulse energy of 30 μJ with a different repetition rate from 10 Hz to 1,000 Hz. The scale bar is 200 μm.
Fig. 7
Fig. 7 The plasma expansion in vacuum environment. The pressure is about 10 Pa.
Fig. 8
Fig. 8 The vapor cloud expansion in a 1 × 104 Pa environment.
Fig. 9
Fig. 9 The microholes drilled with 5,000 pulses for a pulse energy of 50 μJ at different ambient pressures from 1 x 105 Pa to 30 Pa.
Fig. 10
Fig. 10 The contrast of the exit of microholes arrayed with bent microholes (a) and straight microholes (b). The microholes drilled with a circularly polarized laser with a pulse energy of 50 μJ in air (a) and vacuum (b), respectively, at a repetition rate of 1 kHz. The thickness of a sample was 1 mm. The interval between microholes was about 100 μm.

Metrics