Abstract

During grating inscription in photonic crystal fibers (PCFs) the intensity of the inscribing laser beam is non-uniformly distributed over the core region due to the interaction with the air holes in the fiber’s microstructure. In this paper we model and study the non-uniformity of the index modification and its influence on the grating reflection spectra, taking into account the non-linear nature of the index change. For femtosecond laser inscription pulses at 800 nm, we show that the intensity redistribution in the PCF core region can result in Type II index changes even if the peak intensity of the incident beam is well below the corresponding threshold. Our coupled mode analysis reveals that the non-uniform nature of the index change can seriously affect the reflectivity of the grating due to a limited overlap of the guided mode with the transverse index modulation profile for almost all angular orientations of the PCFs with respect to the inscription beam. We also evaluate the influence of PCF tapering and we found that for the considered PCF a significant increase in the induced index change and reflectivity is observed only for taper diameters below 40 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens

Tigran Baghdasaryan, Thomas Geernart, Adriana Morana, Emmanuel Marin, Sylvain Girard, Mariusz Makara, Paweł Mergo, Hugo Thienpont, and Francis Berghmans
Opt. Express 26(11) 14741-14751 (2018)

Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription

Tigran Baghdasaryan, Thomas Geernaert, Francis Berghmans, and Hugo Thienpont
Opt. Express 19(8) 7705-7716 (2011)

Bragg gratings inscribed in selectively inflated photonic crystal fibers

Chao Wang, Jun He, Jingchuan Zhang, Changrui Liao, Ying Wang, Wei Jin, Yiping Wang, and Junhua Wang
Opt. Express 25(23) 28442-28450 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
    [Crossref]
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  4. J. Canning, “Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors,” J. Sens. 2009, 1–17 (2009).
    [Crossref]
  5. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310 (2008).
    [Crossref]
  6. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  7. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
    [Crossref]
  8. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref] [PubMed]
  9. S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
    [Crossref] [PubMed]
  10. N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, “Distributed feedback photonic crystal fibre (DFB-PCF) laser,” Opt. Express 13(8), 2924–2930 (2005).
    [Crossref] [PubMed]
  11. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
    [Crossref]
  12. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
    [Crossref]
  13. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  14. D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
    [Crossref]
  15. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [Crossref] [PubMed]
  16. S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
    [Crossref]
  17. J. Petrovic and T. Allsop, “Scattering of the laser writing beam in photonic crystal fibre,” Opt. Laser Technol. 42(7), 1172–1175 (2010).
    [Crossref]
  18. T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
    [Crossref]
  19. T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
    [Crossref] [PubMed]
  20. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
    [Crossref]
  21. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
    [Crossref]
  22. D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
    [Crossref]
  23. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
    [Crossref] [PubMed]
  24. M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
    [Crossref]
  25. T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
    [Crossref]
  26. A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
    [Crossref]
  27. F. Berghmans, T. Geernaert, M. Napierała, T. Baghdasaryan, C. Sonnenfeld, S. Sulejmani, T. Nasiłowski, P. Mergo, T. Martynkien, W. Urbańczyk, E. Bereś-Pawlik, and H. Thienpont, “Applying optical design methods to the development of application specific photonic crystal fibres,” Proc. SPIE 8550, 85500B 1–17 (2012).
    [Crossref]
  28. T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).
  29. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
    [Crossref] [PubMed]
  30. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  31. NKT Photonics,” http://www.nktphotonics.com/ .
  32. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Rouard’s method modeling of type I-IR fiber Bragg gratings made using an ultrafast IR laser and a phase mask,” J. Opt. Soc. Am. B 23(10), 2011–2017 (2006).
    [Crossref]
  33. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  34. T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
    [Crossref] [PubMed]
  35. E. Gamaly, Femtosecond Laser-Matter Interactions - Theory, Experiments and Applications (Pan Stanford, 2011).
  36. Lumerical FDTD,” http://www.lumerical.com/tcad-products/fdtd/ .
  37. T. Allsop, K. Kalli, K. Zhou, G. N. Smith, M. Komodromos, J. Petrovic, D. J. Webb, and I. Bennion, “Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation femtosecond laser using point-by-point inscription,” J. Opt. Soc. Am. B 28(9), 2105–2114 (2011).
    [Crossref]
  38. A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
    [Crossref]
  39. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]

2014 (2)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

2013 (3)

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

2012 (3)

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

2011 (3)

2010 (4)

2009 (4)

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
[Crossref]

J. Canning, “Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors,” J. Sens. 2009, 1–17 (2009).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (4)

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[Crossref] [PubMed]

2006 (2)

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Rouard’s method modeling of type I-IR fiber Bragg gratings made using an ultrafast IR laser and a phase mask,” J. Opt. Soc. Am. B 23(10), 2011–2017 (2006).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

1997 (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Allsop, T.

Anuszkiewicz, A.

Asatryan, A. A.

Baghdasaryan, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

Bang, O.

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310 (2008).
[Crossref]

Bartelt, H.

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Becker, M.

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Becker, R. G.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

Bennion, I.

Berghmans, F.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Botten, L. C.

Broeng, J.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

Canning, J.

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

J. Canning, “Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors,” J. Sens. 2009, 1–17 (2009).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
[Crossref]

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, “Distributed feedback photonic crystal fibre (DFB-PCF) laser,” Opt. Express 13(8), 2924–2930 (2005).
[Crossref] [PubMed]

Caucheteur, C.

Chah, K.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Chen, K. P.

Childs, P.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

De Waele, W.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Degrieck, J.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Ding, H.

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fuerbach, A.

Geernaert, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Grobnic, D.

Groothoff, N.

Hansen, K.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Inglis, H.

Jewart, C. M.

Jovanovic, N.

Kalli, K.

Kan, D. J.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Klimek, J.

Komodromos, M.

Konstantaki, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

Koutsides, C.

Lægsgaard, J.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

Livitziis, M.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
[Crossref]

Luyckx, G.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Lyytikainen, K.

Mägi, E. C.

Makara, M.

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Martynkien, T.

Mégret, P.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Member, A.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Member, S.

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

Mergo, P.

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

Mihailov, S. J.

Nasilowski, T.

Nikogosyan, D. N.

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

Nolte, S.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

Olszewski, J.

Petrovic, J.

Pissadakis, S.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
[Crossref]

Poturaj, K.

Proulx, A.

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Richter, D.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

Rindorf, L.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Ryan, T.

Saliminia, A.

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Schuster, K.

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

Skorupski, K.

Smelser, C. W.

Smith, G. N.

Sonnenfeld, C.

Sørensen, H. R.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

Sozzi, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

Statkiewicz-Barabach, G.

Stecher, M.

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

Steel, M. J.

Stefani, A.

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

Steinvurzel, P.

Sulejmani, S.

Szczurowski, M. K.

Tarnowski, K.

Terryn, H.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Thienpont, H.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett. 35(10), 1647–1649 (2010).
[Crossref] [PubMed]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Thomas, J.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

Town, G. E.

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

Tsibidis, G. D.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
[Crossref]

Tünnermann, A.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

Urbanczyk, W.

Vallée, R.

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Van Hemelrijck, D.

Varming, P.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

Voet, E.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

Voigtländer, C.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

Wang, Q.

Webb, D. J.

Williams, R. J.

Withford, M. J.

Wojcik, J.

Zhou, K.

Electron. Lett. (2)

D. Grobnic, H. Ding, S. J. Mihailov, C. W. Smelser, and J. Broeng, “High birefringence fibre Bragg gratings written in tapered photonic crystal fibre with femtosecond IR radiation,” Electron. Lett. 43(1), 16–17 (2007).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Stefani, M. Stecher, G. E. Town, S. Member, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett. 24(13), 1148–1150 (2012).
[Crossref]

T. Baghdasaryan, T. Geernaert, M. Becker, K. Schuster, H. Bartelt, M. Makara, P. Mergo, F. Berghmans, and H. Thienpont, “Influence of fiber orientation on femtosecond Bragg grating inscription in pure silica microstructured optical fibers,” IEEE Photon. Technol. Lett. 23(23), 1832–1834 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photon. Technol. Lett. 18(17), 1837–1839 (2006).
[Crossref]

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, H. Thienpont, and A. Member, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009).
[Crossref]

IEEE Photonics J. (1)

T. Baghdasaryan, T. Geernaert, H. Thienpont, and F. Berghmans, “Photonic crystal mikaelian lenses and their potential use as transverse focusing elements in microstructured fibers,” IEEE Photonics J. 5(4), 7100512 (2013).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm, 5 ps laser radiation,” J. Eur. Opt. Soc. Rapid Publ. 4, 09049 (2009).
[Crossref]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Sens. (1)

J. Canning, “Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors,” J. Sens. 2009, 1–17 (2009).
[Crossref]

Laser Photon. Rev. (4)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photon. Rev. 8(1), 27–52 (2014).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6(6), 709–723 (2012).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2(4), 275–289 (2008).
[Crossref]

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon. Rev. 7(3), 439–443 (2013).
[Crossref]

Meas. Sci. Technol. (1)

D. N. Nikogosyan, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18(1), R1–R29 (2007).
[Crossref]

Opt. Commun. (2)

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270(2), 207–210 (2007).
[Crossref]

A. Saliminia, A. Proulx, and R. Vallée, “Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses,” Opt. Commun. 333, 133–138 (2014).
[Crossref]

Opt. Express (8)

T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express 19(8), 7705–7716 (2011).
[Crossref] [PubMed]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
[Crossref] [PubMed]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[Crossref] [PubMed]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

N. Groothoff, J. Canning, T. Ryan, K. Lyytikainen, and H. Inglis, “Distributed feedback photonic crystal fibre (DFB-PCF) laser,” Opt. Express 13(8), 2924–2930 (2005).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

J. Petrovic and T. Allsop, “Scattering of the laser writing beam in photonic crystal fibre,” Opt. Laser Technol. 42(7), 1172–1175 (2010).
[Crossref]

Opt. Lett. (3)

Photonics Lett. Pol. (1)

T. Baghdasaryan, T. Geernaert, P. Mergo, F. Berghmans, and H. Thienpont, “Transverse propagation of ultraviolet and infrared femtosecond laser pulses in photonic crystal fibers,” Photonics Lett. Pol. 4, 72–74 (2012).

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (4)

E. Gamaly, Femtosecond Laser-Matter Interactions - Theory, Experiments and Applications (Pan Stanford, 2011).

Lumerical FDTD,” http://www.lumerical.com/tcad-products/fdtd/ .

NKT Photonics,” http://www.nktphotonics.com/ .

F. Berghmans, T. Geernaert, M. Napierała, T. Baghdasaryan, C. Sonnenfeld, S. Sulejmani, T. Nasiłowski, P. Mergo, T. Martynkien, W. Urbańczyk, E. Bereś-Pawlik, and H. Thienpont, “Applying optical design methods to the development of application specific photonic crystal fibres,” Proc. SPIE 8550, 85500B 1–17 (2012).
[Crossref]

Supplementary Material (6)

» Media 1: MP4 (377 KB)     
» Media 2: MP4 (313 KB)     
» Media 3: MPEG (1612 KB)     
» Media 4: MPEG (1458 KB)     
» Media 5: MPEG (1612 KB)     
» Media 6: MPEG (1458 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of (a) two interfering beams that transversely propagate to the PCF core region, (b) and (c) cross sections of the considered PCFs with wave vector decomposition of the transverse beam into in- and out-of-plane components.
Fig. 2
Fig. 2 Proposed simplified model for the refractive index change as a function of the optical intensity at 800 nm.
Fig. 3
Fig. 3 (a) Outline of the multiple beam scanning modeling approach for PCFs and process for obtaining the distribution of maximal intensities in the fiber core region for (b) a conventional step-index fiber and (c) a photonic crystal fiber.
Fig. 4
Fig. 4 (a) Maximum intensity distribution for PCF-1 and (b) modeled refractive index change in PCF core for the incident beam peak intensity I = 3x1013 W/cm2.
Fig. 5
Fig. 5 Modeled average of the induced transverse refractive index change depending on the angular orientation for (a) PCF-1 and (b) PCF-2 (ESM-12-01).
Fig. 6
Fig. 6 Schematic illustration of the simulation approach used to model the spectral response of a fiber Bragg grating in photonic crystal fiber.
Fig. 7
Fig. 7 Simulated FBG reflectivity as a function of the angular orientation for PCF-1 and PCF-2 (ESM-12-01), and incident beam peak intensity I = 4.3x1013 W/cm2.
Fig. 8
Fig. 8 Dependence of (a) the average of the induced index change in the core region and (b), (c) the resulting grating reflectivity on the fiber taper diameter for gratings written in PCF-2 along the ΓK and ΓM directions of the hexagonal lattice.
Fig. 9
Fig. 9 Refractive index modification profile modeled for different values of fiber taper diameter for PCF (ESM-12-01) orientation along (a) ΓK (Media 1) and (b) ΓM direction of hexagon (Media 2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δn=C I 5
λ xy = λ cos(α)
κ= ω 4 Δε(x,y) E t E t * dxdy
R=tan h 2 (κL)

Metrics