Abstract

A non-iridescent cholesterol liquid crystal (CLC) thin film is demonstrated by using the polymer-stabilized electrohydrodymanic (PSEHD) method. The photopolymerized cell made from a CLC/monomer mixture exhibits an optically stable gridlike pattern. The helical axis of thus-formed CLC is aligned with the hydrodynamic flow induced by a space charge motion, and the arrayed CLC grid configuration renders a wide viewing angle thanks to the limited color shift at various lines of sight. The formation of the PSEHD structure was verified with polarized optical microscopy, ascertaining that the electrohydrodymanic pattern can be photo-cured or stabilized. The PSEHD CLC is simple to fabricate and potentially suitable for applications in wide-viewing-angle or non-iridescent devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization

Wen-Song Li, Ling-Ling Ma, Ling-Li Gong, Sen-Sen Li, Can Yang, Bin Luo, Wei Hu, and Lu-Jian Chen
Opt. Mater. Express 6(1) 19-28 (2016)

Polymer stabilized cholesteric liquid crystal particles with high thermal stability

Qi Yan, Zhan Wei, Pengcheng Lin, Zhengdong Cheng, Mingrui Pu, Zhuoran Huang, and Wei Lin
Opt. Mater. Express 8(6) 1536-1550 (2018)

Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals

Vincent P. Tondiglia, Lalgudi V. Natarajan, Christopher A. Bailey, Michael E. McConney, Kyung Min Lee, Timothy J. Bunning, Rafael Zola, Hossein Nemati, Deng-Ke Yang, and Timothy J. White
Opt. Mater. Express 4(7) 1465-1472 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  2. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  3. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.
  4. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
    [Crossref] [PubMed]
  5. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
    [Crossref] [PubMed]
  6. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  7. Y.-T. Lin and T.-H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
    [Crossref]
  8. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  9. D.-K. Yang, Z. Lu, and J. W. Doane, “Bistable polymer dispersed cholesteric liquid crystal displays,” United States Patent 6061107A. (May 9, 2000).
  10. D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
    [Crossref]
  11. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref] [PubMed]
  12. Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  13. Y.-C. Hsiao, H.-T. Wang, and W. Lee, “Thermodielectric generation of defect modes in a photonic liquid crystal,” Opt. Express 22(3), 3593–3599 (2014).
    [Crossref] [PubMed]
  14. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mater. Express 1(8), 1484–1493 (2011).
    [Crossref]
  15. L. Kramer and W. Pesch, “Convection instabilities in nematic liquid crystals,” Annu. Rev. Fluid Mech. 27(1), 515–539 (1995).
    [Crossref]
  16. S. Kai and W. Zimmermann, “Pattern dynamics in the electrohydrodynamics of nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–492 (1989).
    [Crossref]
  17. W. Helfrich, “Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
    [Crossref]
  18. E. F. Carr, “Influence of electric fields on the molecular alignment in the liquid crystal p-(anisalamino)-phenyl acetate,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7, 253–268 (1969).
  19. J. H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
    [Crossref]
  20. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [Crossref]
  21. J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
    [Crossref]
  22. D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
    [Crossref]
  23. M. Lu and H. Yuan, “Bistable cholesteric liquid crystal displays with very high contrast and excellent mechanical stability,” United States Patent 5570216A (October 29, 1996).

2014 (1)

2013 (2)

2011 (5)

2007 (1)

J. H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

2006 (1)

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

1997 (1)

D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

1995 (1)

L. Kramer and W. Pesch, “Convection instabilities in nematic liquid crystals,” Annu. Rev. Fluid Mech. 27(1), 515–539 (1995).
[Crossref]

1994 (3)

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

1989 (1)

S. Kai and W. Zimmermann, “Pattern dynamics in the electrohydrodynamics of nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–492 (1989).
[Crossref]

1973 (1)

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

1969 (2)

W. Helfrich, “Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

E. F. Carr, “Influence of electric fields on the molecular alignment in the liquid crystal p-(anisalamino)-phenyl acetate,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7, 253–268 (1969).

Carr, E. F.

E. F. Carr, “Influence of electric fields on the molecular alignment in the liquid crystal p-(anisalamino)-phenyl acetate,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7, 253–268 (1969).

Chen, C.-H.

Chien, L. C.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Glasser, J.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

W. Helfrich, “Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

Hou, C.-T.

Hsiao, Y.-C.

Huang, X.-Y.

D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Huh, J. H.

J. H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

Hurault, J. P.

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

Ilchishin, I. P.

Kai, S.

S. Kai and W. Zimmermann, “Pattern dynamics in the electrohydrodynamics of nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–492 (1989).
[Crossref]

Kramer, L.

L. Kramer and W. Pesch, “Convection instabilities in nematic liquid crystals,” Annu. Rev. Fluid Mech. 27(1), 515–539 (1995).
[Crossref]

Lee, W.

Lin, T.-H.

Y.-T. Lin and T.-H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

Lin, Y.-T.

Y.-T. Lin and T.-H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

Lisetski, L. N.

Mykytiuk, T. V.

Pesch, W.

L. Kramer and W. Pesch, “Convection instabilities in nematic liquid crystals,” Annu. Rev. Fluid Mech. 27(1), 515–539 (1995).
[Crossref]

Tang, C. Y.

Timofeev, I. V.

Wang, H.-T.

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Wu, C.-Y.

Yang, D.-K.

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yaniv, Z.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Zhu, Y.-M.

D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Zimmermann, W.

S. Kai and W. Zimmermann, “Pattern dynamics in the electrohydrodynamics of nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–492 (1989).
[Crossref]

Zou, Y.-H.

Zyryanov, V. Ya.

Annu. Rev. Fluid Mech. (1)

L. Kramer and W. Pesch, “Convection instabilities in nematic liquid crystals,” Annu. Rev. Fluid Mech. 27(1), 515–539 (1995).
[Crossref]

Annu. Rev. Mater. Sci. (1)

D.-K. Yang, X.-Y. Huang, and Y.-M. Zhu, “Bistable cholesteric reflective displays: Materials and drive schemes,” Annu. Rev. Mater. Sci. 27(1), 117–146 (1997).
[Crossref]

Appl. Phys. Lett. (1)

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

J. Appl. Phys. (2)

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

J. Chem. Phys. (3)

W. Helfrich, “Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys. 51(9), 4092–4105 (1969).
[Crossref]

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

J. Disp. Technol. (2)

Y.-T. Lin and T.-H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2(1), 32–37 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

E. F. Carr, “Influence of electric fields on the molecular alignment in the liquid crystal p-(anisalamino)-phenyl acetate,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7, 253–268 (1969).

J. H. Huh, “Electrohydrodynamic instability in cholesteric liquid crystals in the presence of a magnetic field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 477, 67–76 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (2)

Prog. Theor. Phys. Suppl. (1)

S. Kai and W. Zimmermann, “Pattern dynamics in the electrohydrodynamics of nematic liquid crystals,” Prog. Theor. Phys. Suppl. 99, 458–492 (1989).
[Crossref]

Other (3)

D.-K. Yang, Z. Lu, and J. W. Doane, “Bistable polymer dispersed cholesteric liquid crystal displays,” United States Patent 6061107A. (May 9, 2000).

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.

M. Lu and H. Yuan, “Bistable cholesteric liquid crystal displays with very high contrast and excellent mechanical stability,” United States Patent 5570216A (October 29, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the fabrication of a CLC cell in the initial PSEHD state.
Fig. 2
Fig. 2 POM images of (a) a typical EHD GP, (b) a PSEHD GP, and (c) an enlarged (10 × ) size of the EHD GP generated in an initially identical cell containing prepolymer.
Fig. 3
Fig. 3 Frequency-dependent threshold voltage required to induce the GP state. fc is the critical frequency.
Fig. 4
Fig. 4 Comparative transmittance spectra of (a) a planar CLC cell and (b) a PSEHD cell at various viewing angles.
Fig. 5
Fig. 5 The central wavelength of the Bragg reflection as a function of the viewing angle. Data are retrieved from Fig. 4. Inset: photographs of a PSEHD cell as viewed at ± 60° (sides) and 0° (middle).
Fig. 6
Fig. 6 White-light optical response of a bistable PSEHD CLC cell to voltage pulses of 3 s in pulse width.

Metrics