Abstract

We report the first demonstration of narrowband parametric amplification in a chip scale semiconductor waveguide. A dispersion engineered, Ga0.5In0.5P photonic crystal waveguide with a dispersion function that exhibits two zero crossings was used with a pulsed pump placed in the normal dispersion regime while a tunable probe was scanned on either side of the pump. A peak conversion efficiency of − 10dB was obtained with a peak pump power of only 650mW. The narrowband nature of the gain spectrum was clearly demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein
Opt. Express 21(9) 10440-10453 (2013)

Parametric gain in dispersion engineered photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, I. Cestier, and G. Eisenstein
Opt. Express 21(4) 4995-5004 (2013)

Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime

Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Jin Wen
Opt. Express 19(24) 24730-24737 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Optics Communications 226, 415–422 (2003).
    [Crossref]
  2. M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
    [Crossref]
  3. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [Crossref] [PubMed]
  4. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
    [Crossref] [PubMed]
  5. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007).
    [Crossref] [PubMed]
  6. A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol. 26, 2260–2268 (2008).
    [Crossref]
  7. J. Harvey, S. Murdoch, and R. Leonhardt, “Recent advances in fiber optic parametric amplifiers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010) 1–3.
  8. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μ m wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
    [Crossref] [PubMed]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics 4, 557–560 (2010).
    [Crossref]
  10. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
    [Crossref] [PubMed]
  11. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5db gain at telecommunication wavelengths using cmoscompatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
    [Crossref] [PubMed]
  12. B. Kuyken, X. Liu, G. Roelkens, R. Baets, M. Richard, J. Osgood, and W. M. J. Green, “50ï¿oedb parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36, 4401–4403 (2011).
    [Crossref] [PubMed]
  13. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
    [Crossref] [PubMed]
  14. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
    [Crossref] [PubMed]
  15. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
    [Crossref] [PubMed]
  16. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
    [Crossref] [PubMed]
  17. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20, 13108–13114 (2012).
    [Crossref] [PubMed]
  18. S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
    [Crossref] [PubMed]
  19. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
    [Crossref] [PubMed]
  20. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
    [Crossref] [PubMed]
  21. S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
    [Crossref]
  22. S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics Journal 4, 224–233 (2012).
    [Crossref]
  23. A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol. 30, 2988–2994 (2012).
    [Crossref]
  24. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15, 2269–2275 (1998).
    [Crossref]
  25. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

2014 (1)

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

2013 (3)

2012 (5)

2011 (3)

2010 (4)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
[Crossref]

2003 (1)

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Optics Communications 226, 415–422 (2003).
[Crossref]

1998 (1)

Baets, R.

Blit, R.

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[Crossref] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Bogaerts, W.

Cestier, I.

Clemmen, S.

Coen, S.

Colman, P.

Combrie, S.

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

Combrié, S.

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
[Crossref] [PubMed]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20, 13108–13114 (2012).
[Crossref] [PubMed]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
[Crossref] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref] [PubMed]

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics Journal 4, 224–233 (2012).
[Crossref]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
[Crossref] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[Crossref] [PubMed]

Corcoran, B.

Dahan, D.

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

De Rossi, A.

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics Journal 4, 224–233 (2012).
[Crossref]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20, 13108–13114 (2012).
[Crossref] [PubMed]

Ebnali-Heidari, M.

Eckhouse, V.

Eggleton, B. J.

Eisenstein, G.

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
[Crossref] [PubMed]

A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol. 30, 2988–2994 (2012).
[Crossref]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
[Crossref] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
[Crossref] [PubMed]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μ m wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[Crossref] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[Crossref] [PubMed]

A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol. 26, 2260–2268 (2008).
[Crossref]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Emplit, P.

Gershikov, A.

Green, W. M. J.

Grillet, C.

Harvey, J.

J. Harvey, S. Murdoch, and R. Leonhardt, “Recent advances in fiber optic parametric amplifiers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010) 1–3.

Harvey, J. D.

Hsieh, A. S. Y.

Karlsson, M.

Kazovsky, L. G.

M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
[Crossref]

Krauss, T. F.

Kuyken, B.

Lehoucq, G.

Leonhardt, R.

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007).
[Crossref] [PubMed]

J. Harvey, S. Murdoch, and R. Leonhardt, “Recent advances in fiber optic parametric amplifiers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010) 1–3.

Li, J.

Liu, X.

Marhic, M.

M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
[Crossref]

Massar, S.

Millot, G.

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Optics Communications 226, 415–422 (2003).
[Crossref]

Monat, C.

Murdoch, S.

J. Harvey, S. Murdoch, and R. Leonhardt, “Recent advances in fiber optic parametric amplifiers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010) 1–3.

Murdoch, S. G.

O’Faolain, L.

Osgood, J.

Osgood, R. M.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics 4, 557–560 (2010).
[Crossref]

Pitois, S.

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Optics Communications 226, 415–422 (2003).
[Crossref]

Richard, M.

Roelkens, G.

Rossi, A. D.

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
[Crossref] [PubMed]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
[Crossref] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
[Crossref] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[Crossref] [PubMed]

Roy, S.

Santagiustina, M.

Selvaraja, S. K.

Shumakher, E.

Someda, C. G.

Thourhout, D. V.

Vadalà, G.

Vanholsbeeck, F.

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics 4, 557–560 (2010).
[Crossref]

White, T. P.

Willinger, A.

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
[Crossref] [PubMed]

A. Willinger and G. Eisenstein, “Split step fourier transform: A comparison between single and multiple envelope formalisms,” J. Lightwave Technol. 30, 2988–2994 (2012).
[Crossref]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
[Crossref] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
[Crossref] [PubMed]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μ m wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[Crossref] [PubMed]

A. Willinger, E. Shumakher, and G. Eisenstein, “On the roles of polarization and raman-assisted phase matching in narrowband fiber parametric amplifiers,” J. Lightwave Technol. 26, 2260–2268 (2008).
[Crossref]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[Crossref] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

Wong, G. K. L.

Wong, K. K.-Y.

M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
[Crossref]

Xavier, S.

IEEE Journal of Selected Topics in Quantum Electronics (1)

M. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 10, 1133–1141 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Lightwave Technology, Journal of (1)

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrie, and A. De Rossi, “Parametric gain and conversion efficiency in nanophotonic waveguides with dispersive propagation coefficients and loss,” Lightwave Technology, Journal of 32, 1177–1182 (2014).
[Crossref]

Nature Photonics (1)

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nature Photonics 4, 557–560 (2010).
[Crossref]

Opt. Express (8)

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 gbit/s data in a slow light system based onnarrow band fiber parametric amplification,” Opt. Express 14, 8540–8545 (2006).
[Crossref] [PubMed]

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007).
[Crossref] [PubMed]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20, 13108–13114 (2012).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Parametric gain in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 4995–5004 (2013).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express 21, 5931–5940 (2013).
[Crossref] [PubMed]

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, and G. Eisenstein, “Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides,” Opt. Express 21, 10440–10453 (2013).
[Crossref] [PubMed]

Opt. Lett. (7)

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5db gain at telecommunication wavelengths using cmoscompatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
[Crossref] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. D. Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered gainp photonic crystal waveguides,” Opt. Lett. 36, 2629–2631 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, M. Richard, J. Osgood, and W. M. J. Green, “50ï¿oedb parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36, 4401–4403 (2011).
[Crossref] [PubMed]

S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, and M. Santagiustina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012).
[Crossref] [PubMed]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11db gain at 1550nm based on a slow-light gainp photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. D. Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in gainp photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010).
[Crossref] [PubMed]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μ m wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010).
[Crossref] [PubMed]

Optics Communications (1)

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Optics Communications 226, 415–422 (2003).
[Crossref]

Photonics Journal (1)

S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” Photonics Journal 4, 224–233 (2012).
[Crossref]

Other (2)

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification,” in Proceedings of Optical Fiber Communication Conference and Exposition (Anaheim Convention Center, Anaheim, CA, USA, 2007).

J. Harvey, S. Murdoch, and R. Leonhardt, “Recent advances in fiber optic parametric amplifiers,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 (2010) 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Spectra of the fitted linear dispersion coefficient β2 (blue trace and left axis) and measured loss coefficient αdB (green trace and right axis). The inset shows the edge of the PCW with a mode converter. (b) Map of the parametric gain coefficient g in units of mm−1. The dashed lines mark the two zero dispersion wavelengths.
Fig. 2
Fig. 2 Experimental setup. Light is coupled into and out of the PCW by free-space beams (red lines), which are coupled to optical fibers (blue lines).
Fig. 3
Fig. 3 Measurements of output spectra with a pulsed pump and a CW probe. Different probe-pump detunings generate idlers at appropriate different wavelengths, depending on pump wavelength: (a) λp = 1547.9nm ans (b) λp = 1549.6nm.
Fig. 4
Fig. 4 Conversion efficiency obtained from M-SSFT simulations (solid curves) and from measurements (dots) as a function of probe-pump detuning for a pump at 1547.9nm (blue) and 1549.6nm (red).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g = ( γ F P p ) 2 [ Δ k + 2 ( γ p s + γ p i γ p ) P p 2 ] 2 ,
I e f f = I S P M ( λ ) = A [ 1 + e 2 B ( λ λ 0 ) 2 e B ( λ λ 0 ) + C ] .
I X P M ( λ 1 , λ 2 ) = I S P M ( λ 1 ) I S P M ( λ 2 ) 1 + 2 F ( λ 2 λ 1 ) ,
I F W M ( λ 1 , λ 2 , λ 3 , λ 4 ) = m = 1 4 I S P M ( λ m ) 4 1 + 2 F ( λ 3 λ 1 ) .

Metrics