Abstract

We propose and validate experimentally a time-delay to intensity mapping process based on second-order optical integrators. This mapping provides dynamic control of the intensity modulation profile of a waveform based on a purely passive and linear process. In particular, we can realize linear intensity control by tuning the time-delay between two optical pulses launched into a second-order optical integrator. We suggest and experimentally prove the use of this mapping process for reconfigurable optical arbitrary waveform generation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper

Shasha Liao, Yunhong Ding, Jianji Dong, Ting Yang, Xiaolin Chen, Dingshan Gao, and Xinliang Zhang
Opt. Express 23(9) 12161-12173 (2015)

Photonic arbitrary waveform generator based on Taylor synthesis method

Shasha Liao, Yunhong Ding, Jianji Dong, Siqi Yan, Xu Wang, and Xinliang Zhang
Opt. Express 24(21) 24390-24400 (2016)

Photonic arbitrary waveform generation based on crossed frequency to time mapping

H.-Y. Jiang, L.-S. Yan, Y.-F. Sun, J. Ye, W. Pan, B. Luo, and X.-H. Zou
Opt. Express 21(5) 6488-6496 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  2. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
    [Crossref] [PubMed]
  3. R. Ashrafi and J. Azaña, “Figure of merit for photonic differentiators,” Opt. Express 20(3), 2626–2639 (2012).
    [Crossref] [PubMed]
  4. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
    [PubMed]
  5. S. Tan, Z. Wu, L. Lei, S. Hu, J. Dong, and X. Zhang, “All-optical computation system for solving differential equations based on optical intensity differentiator,” Opt. Express 21(6), 7008–7013 (2013).
    [Crossref] [PubMed]
  6. N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-based integrators for dark soliton generation,” J. Lightwave Technol. 24(1), 563–572 (2006).
    [Crossref]
  7. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [Crossref] [PubMed]
  8. M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett. 35(8), 1191–1193 (2010).
    [Crossref] [PubMed]
  9. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
    [Crossref] [PubMed]
  10. M. H. Asghari and J. Azaña, “Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating,” Opt. Lett. 33(13), 1548–1550 (2008).
    [Crossref] [PubMed]
  11. N. Huang, M. Li, R. Ashrafi, L. Wang, X. Wang, J. Azaña, and N. Zhu, “Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window,” Opt. Express 22(3), 3105–3116 (2014).
    [Crossref] [PubMed]
  12. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]
  13. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
    [Crossref] [PubMed]
  14. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
    [Crossref]
  15. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  16. Y. Park, M. H. Asghari, T. J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
    [Crossref] [PubMed]
  17. V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
    [Crossref]
  18. D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
    [Crossref]
  19. S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg gratings with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009).
    [Crossref]
  20. K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
    [Crossref]
  21. B. Howley, X. Wang, M. Chen, and R. T. Chen, “Reconfigurable delay time polymer planar lightwave circuit for an X-band phased-array antenna demonstration,” J. Lightwave Technol. 25(3), 883–890 (2007).
    [Crossref]
  22. Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express 18(17), 17859–17864 (2010).
    [Crossref] [PubMed]
  23. X. Luo, H. Chen, and A. W. Poon, “Electro-optical tunable time delay and advance in silicon microring resonators,” Opt. Lett. 35(17), 2940–2942 (2010).
    [Crossref] [PubMed]
  24. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
    [Crossref] [PubMed]
  25. S. Khan and S. Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Opt. Express 20(18), 19859–19867 (2012).
    [Crossref] [PubMed]
  26. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22(1), 817–823 (2014).
    [Crossref] [PubMed]
  27. J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22(19), 22707–22715 (2014).
    [Crossref] [PubMed]
  28. S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
    [Crossref]
  29. http://www.ll.mit.edu/about/facility-EPIF.html
  30. N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
    [Crossref] [PubMed]
  31. N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284(15), 3693–3705 (2011).
    [Crossref]
  32. J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
    [Crossref]
  33. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  34. F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
    [Crossref]
  35. R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38(9), 1419–1421 (2013).
    [Crossref] [PubMed]
  36. Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightwave Technol. 26(19), 3329–3336 (2008).
    [Crossref]

2014 (3)

2013 (3)

2012 (2)

2011 (3)

2010 (8)

J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett. 35(8), 1191–1193 (2010).
[Crossref] [PubMed]

Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express 18(17), 17859–17864 (2010).
[Crossref] [PubMed]

X. Luo, H. Chen, and A. W. Poon, “Electro-optical tunable time delay and advance in silicon microring resonators,” Opt. Lett. 35(17), 2940–2942 (2010).
[Crossref] [PubMed]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

2007 (2)

2006 (2)

N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-based integrators for dark soliton generation,” J. Lightwave Technol. 24(1), 563–572 (2006).
[Crossref]

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

2005 (1)

2004 (1)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

2003 (2)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

1997 (1)

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

1995 (1)

Ahn, T. J.

Andrés, M. V.

Asghari, M. H.

Ashrafi, R.

Azaña, J.

N. Huang, M. Li, R. Ashrafi, L. Wang, X. Wang, J. Azaña, and N. Zhu, “Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window,” Opt. Express 22(3), 3105–3116 (2014).
[Crossref] [PubMed]

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett. 38(9), 1419–1421 (2013).
[Crossref] [PubMed]

R. Ashrafi and J. Azaña, “Figure of merit for photonic differentiators,” Opt. Express 20(3), 2626–2639 (2012).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett. 35(8), 1191–1193 (2010).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

M. H. Asghari and J. Azaña, “Proposal for arbitrary-order temporal integration of ultrafast optical signals using a single uniform-period fiber Bragg grating,” Opt. Lett. 33(13), 1548–1550 (2008).
[Crossref] [PubMed]

Y. Park, M. H. Asghari, T. J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

Baghban, M. A.

Barmenkov, Y. O.

Belhadj, N.

Binh, L. N.

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Blais, S.

Bowers, J. E.

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

Bui, L. A.

Chen, H.

Chen, J.

Chen, M.

Chen, R. T.

Chériaux, G.

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Coppinger, F.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

Cruz, J. L.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Dai, Y.

Dastmalchi, M.

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Dexter, J. L.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Díez, A.

Dong, J.

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Emami, H.

Fathpour, S.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Fontaine, N. K.

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284(15), 3693–3705 (2011).
[Crossref]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[Crossref] [PubMed]

Geisler, D. J.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

He, T.

Helkey, R. J.

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

Heritage, J. P.

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Horikawa, K.

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
[Crossref]

Howley, B.

Hu, S.

Huang, N.

Hunter, D. B.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Ibsen, M.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

Jiang, Z.

Joffre, M.

Kaman, V.

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Khan, S.

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Kitoh, T.

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
[Crossref]

LaRochelle, S.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

Lei, L.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Lepetit, L.

Li, M.

Li, X.

Li, Z.

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Luo, X.

Mitchell, A.

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Ng, T. T.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

Ngo, N. Q.

Oei, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Ogawa, H.

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
[Crossref]

Ogawa, I.

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
[Crossref]

Park, Y.

Parker, M. E.

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

Parmigiani, F.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

Petropoulos, P.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

Poon, A. W.

Pusarla, C.

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Richardson, D. J.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

Sarkhosh, N.

Scott, R. P.

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284(15), 3693–3705 (2011).
[Crossref]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[Crossref] [PubMed]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Tan, S.

Trinh, P. D.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

Wang, C.

Wang, J.

Wang, L.

Wang, X.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

Wu, Z.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xie, J.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yao, J.

Yegnanarayanan, S.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

Yoo, S. J. B.

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284(15), 3693–3705 (2011).
[Crossref]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[Crossref] [PubMed]

Zhang, X.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zheng, X.

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

Zhou, L.

Zhu, N.

Zou, Z.

IEEE Photon. Technol. Lett. (4)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

V. Kaman, X. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, “A 32-alement 8-Bit photonic true-time-delay system based on a 288×288 3-D MEMS optical switch,” IEEE Photon. Technol. Lett. 15(6), 849–851 (2003).
[Crossref]

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, “Compact silicon-based integrated optic time delays,” IEEE Photon. Technol. Lett. 9(5), 634–635 (1997).
[Crossref]

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Timing jitter tolerant all-optical TDM demultiplexing using a sawtooth pulse shaper,” IEEE Photon. Technol. Lett. 20(23), 1992–1994 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. B. Hunter, M. E. Parker, and J. L. Dexter, “Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 54(2), 861–867 (2006).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(29), 29 (2010).
[PubMed]

Nat. Photonics (4)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics 4(2), 79–80 (2010).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radio frequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Nature (1)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications,” Opt. Commun. 284(15), 3693–3705 (2011).
[Crossref]

Opt. Express (13)

N. Huang, M. Li, R. Ashrafi, L. Wang, X. Wang, J. Azaña, and N. Zhu, “Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window,” Opt. Express 22(3), 3105–3116 (2014).
[Crossref] [PubMed]

N. K. Fontaine, D. J. Geisler, R. P. Scott, T. He, J. P. Heritage, and S. J. B. Yoo, “Demonstration of high-fidelity dynamic optical arbitrary waveform generation,” Opt. Express 18(22), 22988–22995 (2010).
[Crossref] [PubMed]

Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express 18(17), 17859–17864 (2010).
[Crossref] [PubMed]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19(12), 11780–11785 (2011).
[Crossref] [PubMed]

S. Khan and S. Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Opt. Express 20(18), 19859–19867 (2012).
[Crossref] [PubMed]

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22(1), 817–823 (2014).
[Crossref] [PubMed]

J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22(19), 22707–22715 (2014).
[Crossref] [PubMed]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “All-optical 1st and 2nd order integration on a chip,” Opt. Express 19(23), 23153–23161 (2011).
[Crossref] [PubMed]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
[Crossref] [PubMed]

R. Ashrafi and J. Azaña, “Figure of merit for photonic differentiators,” Opt. Express 20(3), 2626–2639 (2012).
[Crossref] [PubMed]

S. Tan, Z. Wu, L. Lei, S. Hu, J. Dong, and X. Zhang, “All-optical computation system for solving differential equations based on optical intensity differentiator,” Opt. Express 21(6), 7008–7013 (2013).
[Crossref] [PubMed]

Y. Park, M. H. Asghari, T. J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (2)

http://www.ll.mit.edu/about/facility-EPIF.html

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference, (San Jose, Calif., 1996), 2, pp. 100–101.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the first-order and second-order OI responses to a single Gaussian-like optical pulse. For better visualization of the first- and second-order OI outputs, y1(t) and y2(t) have been plotted with different peak amplitude scales.
Fig. 2
Fig. 2 (a) Operation principle of the time-delay to intensity mapping process in a second-order OI. (b) General architecture of the proposed OAWG approach based on the time-delay to intensity mapping process using an N-tap ATD.
Fig. 3
Fig. 3 The measured spectral (a) and temporal impulse (b) responses of the implemented second-order OI.
Fig. 4
Fig. 4 Experimental setup for time-domain output measurement of the implemented OAWG system based on FTSI method. MLL: mode-locked laser; OSA: optical spectrum analyzer; FC: fiber coupler, TDL: tunable delay line.
Fig. 5
Fig. 5 Experimentally measured (solid blue curves) and simulated (solid red curves) waveforms generated at the output of the implemented OAWG system. The simulated temporal impulse response of the OAWG system is also shown by a dotted black curve. The OAWG system has N = 8 taps with T = 0.5ps delay between the taps. The time-delay vector has been tuned for synthesizing the following optical waveforms; (a) triangular pulse with equal rising and falling times, (b) triangular pulse with slow rising time and fast falling time, (c) Triangular pulse with fast rising time and slow falling time, (d) flat-top pulse, (e) convex parabolic pulse, and (f) concave parabolic pulse. The time-delay vectors are presented in Table 1 for each waveform generation case.
Fig. 6
Fig. 6 A numerical analysis for the spectral bandwidth requirement of the OI in the proposed OAWG technique. (a) OI's spectral response in ideal case with no bandwidth limitation and also for three different cases of OIs with reduced bandwidths. (b) The corresponding generated output waveform for each case. A low-pass Gaussian filter with FWHM spectral width of 3.7THz, 1.85THz and 0.92THz has been applied to the ideal OI's response to synthesize the spectral response of the OIs for the three cases of Case 1, Case 2 and Case 3, respectively.
Fig. 7
Fig. 7 An illustration of some basic parameters defined on the temporal impulse response of the OI, for obtaining estimates of the ADR in the proposed OAWG scheme. For better visualization of the ADR estimation method, the impulse response ripples of the OI has been illustrated separately from the ramp profile.
Fig. 8
Fig. 8 Two alternative impulse response profiles of a passive second-order OI.
Fig. 9
Fig. 9 The numerically simulated total signal at the output of the proposed OAWG scheme, for the two cases of the OI's impulse response profiles shown in Fig. 8(a), (b). The total output signal includes the target output waveform (i.e. the flat-top pulse) within the ITW, and the output signal outside the ITW. The estimated ERs are given in each case.

Tables (1)

Tables Icon

Table 1 The values of the tuned time-delay vector for generation of the optical waveforms shown in Fig. 5.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

y 1 (t) t 1 = t x( t 1 )d t 1 .
y 2 (t) t 2 = t 2 =t t 1 = t 1 = t 2 x( t 1 )d t 1 d t 2 ,
y(t)= t 2 = t 2 =t t 1 = t 1 = t 2 [ x( t 1 ) ] d t 1 d t 2 = t 2 = t 2 =t t 1 = t 1 = t 2 [ s( t 1 )s( t 1 τ ) ] d t 1 d t 2 { αt0<t<τ ατt>τ ,
H ATD (ω)= n=1 8 e j φ n { e jω( nT ) e jω( nT τ n ) } ,
TBP=Δ t WG ×B W WG ,
Δ t WG =NT,
B W WG 1/T,
TBPN.
Δ t OI >Δ t WG ,
B W OI >B W WG ,
A min = h 0 SNR ,
τ min = A min α ,
ADR= A max A min = SNR N ,

Metrics