Abstract

Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M2=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M2=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT

S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh
Opt. Express 17(16) 13711-13726 (2009)

Engineered aperiodically poled nonlinear crystal for high-power second-harmonic generation

Saeed Ghavami Sabouri and Alireza Khorsandi
J. Opt. Soc. Am. B 33(12) 2493-2501 (2016)

Thermal dephasing compensation in high-power and high-repetition-rate second-harmonic generation using spillover loss

Saeed Ghavami Sabouri and Alireza Khorsandi
J. Opt. Soc. Am. B 33(8) 1640-1648 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science, 2005).
  2. N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
    [Crossref]
  3. Z. M. Liao, S. A. Payne, J. Dawson, A. Drobshoff, C. Ebbers, D. Pennington, and L. Taylor, “Thermally induced dephasing in periodically poled KTP frequency-doubling crystals,” J. Opt. Soc. Am. B 21(12), 2191 (2004).
    [Crossref]
  4. G. Li, Y. Cui, and J. Wang, “Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO₃ waveguide,” Opt. Express 21(19), 21790–21799 (2013).
    [Crossref] [PubMed]
  5. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
    [Crossref] [PubMed]
  6. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [Crossref]
  7. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19(23), 22588–22593 (2011).
    [Crossref] [PubMed]
  8. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
    [Crossref]
  9. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [Crossref] [PubMed]
  10. D. Fluck and P. Günter, “Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals,” Opt. Commun. 147(4-6), 305–308 (1998).
    [Crossref]
  11. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
    [Crossref] [PubMed]
  12. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
    [Crossref] [PubMed]
  13. S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).
  14. S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
    [Crossref]
  15. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
    [Crossref]
  16. O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
    [Crossref] [PubMed]
  17. C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).
  18. O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
    [Crossref]
  19. T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
    [Crossref] [PubMed]
  20. T. Kamali, B. Považay, S. Kumar, Y. Silberberg, B. Hermann, R. Werkmeister, W. Drexler, and A. Unterhuber, “Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography,” Opt. Lett. 39(19), 5709–5712 (2014).
    [Crossref] [PubMed]
  21. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
    [Crossref]
  22. S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
    [Crossref]
  23. A. G. Schott, “Optical Glass Data Sheets,” http://www.schott.com/advanced_optics/english/download/schott-optical-glass-collection-datasheets-april-2015-eng.pdf .
  24. T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
    [Crossref]

2015 (1)

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

2014 (2)

T. Kamali, B. Považay, S. Kumar, Y. Silberberg, B. Hermann, R. Werkmeister, W. Drexler, and A. Unterhuber, “Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography,” Opt. Lett. 39(19), 5709–5712 (2014).
[Crossref] [PubMed]

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

2013 (3)

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

G. Li, Y. Cui, and J. Wang, “Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO₃ waveguide,” Opt. Express 21(19), 21790–21799 (2013).
[Crossref] [PubMed]

2011 (4)

H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19(23), 22588–22593 (2011).
[Crossref] [PubMed]

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

2009 (2)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2005 (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
[Crossref]

2004 (1)

2003 (1)

1998 (1)

D. Fluck and P. Günter, “Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals,” Opt. Commun. 147(4-6), 305–308 (1998).
[Crossref]

1991 (1)

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[Crossref]

Adamiec, P.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Andersen, P. E.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

Angert, N. B.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

Aveline, D.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[Crossref]

Bugge, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Byer, R. L.

Cui, Y.

Dajani, I.

Dawson, J.

Devi, K.

Dietzek, B.

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

Digonnet, M. J. F.

Dittmar, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Drexler, W.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

T. Kamali, B. Považay, S. Kumar, Y. Silberberg, B. Hermann, R. Werkmeister, W. Drexler, and A. Unterhuber, “Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography,” Opt. Lett. 39(19), 5709–5712 (2014).
[Crossref] [PubMed]

Drobshoff, A.

Ebbers, C.

Ebrahim-Zadeh, M.

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

Erbert, G.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

Ernsting, I.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Fejer, M. M.

Fiebig, C.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Fluck, D.

D. Fluck and P. Günter, “Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals,” Opt. Commun. 147(4-6), 305–308 (1998).
[Crossref]

Fricke, J.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Garmash, V. M.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

Günter, P.

D. Fluck and P. Günter, “Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals,” Opt. Commun. 147(4-6), 305–308 (1998).
[Crossref]

Guo, S.

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

Han, Y.

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

Hansen, A. K.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

Hansen, M.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Hasler, K.-H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

He, J.

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

Hermann, B.

Hum, D. S.

Jensen, O. B.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

Kamali, T.

Kan, H.

T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
[Crossref]

Kasamatsu, T.

T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
[Crossref]

Katagai, T.

Keller, U.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Khorsandi, A.

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[Crossref]

Knize, R. J.

Kontur, F. J.

Kubomura, H.

T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
[Crossref]

Kumar, S.

Kumar, S. C.

Kurimura, S.

Lee, Y.

Li, G.

Liao, Z. M.

Lim, H. H.

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Lu, Y.

Lundblad, N.

Maleki, L.

Meyer, T.

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

Mio, N.

Moriwaki, S.

Muller, A.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

Nevsky, A.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Noguchi, K.

Ohmae, N.

Paschke, K.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Pavlova, N. I.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

Payne, S. A.

Pekarek, S.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Pennington, D.

Petersen, P. M.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

Popp, J.

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

Považay, B.

Sabouri, S. G.

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

Samanta, G. K.

Schiller, S.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Schmitt, M.

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

Shen, J.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Shimizu, T.

Shoji, I.

Silberberg, Y.

Sinha, S.

Suddapalli, C. K.

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

Südmeyer, T.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Sumpf, B.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

Suzuki, I.

Takeno, K.

Tarasov, A. V.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

Taylor, L.

Thompson, R.

Tovstonog, S. V.

Tränkle, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Tu, M.

Uebernickel, M.

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

Unterhuber, A.

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

T. Kamali, B. Považay, S. Kumar, Y. Silberberg, B. Hermann, R. Werkmeister, W. Drexler, and A. Unterhuber, “Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography,” Opt. Lett. 39(19), 5709–5712 (2014).
[Crossref] [PubMed]

Urbanek, K. E.

Vasilyev, S.

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Wang, J.

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

G. Li, Y. Cui, and J. Wang, “Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO₃ waveguide,” Opt. Express 21(19), 21790–21799 (2013).
[Crossref] [PubMed]

Wenzel, H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Werkmeister, R.

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Zorn, M.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

Appl. Phys. B (1)

S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, and S. Schiller, “Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions,” Appl. Phys. B 103(1), 27–33 (2011).
[Crossref]

Appl. Phys. Lett. (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1009–1020 (2009).
[Crossref]

O. B. Jensen, A. K. Hansen, A. Muller, B. Sumpf, A. Unterhuber, W. Drexler, P. M. Petersen, and P. E. Andersen, “Power scaling of nonlinear frequency converted tapered diode lasers for biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20(2), 307–321 (2014).
[Crossref]

S. G. Sabouri, C. K. Suddapalli, A. Khorsandi, and M. Ebrahim-Zadeh, “Focusing optimization for high-power continuous-wave second-harmonic generation in the presence of thermal effects,” IEEE J. Sel. Top. Quantum Electron. 21(1), 185–192 (2015).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[Crossref]

J. Biophotonics (1)

T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms,” J. Biophotonics 6(11-12), 887–904 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Kasamatsu, H. Kubomura, and H. Kan, “Numerical simulation of conversion efficiency and beam quality factor in second harmonic generation with diffraction and pump depletion,” Jpn. J. Appl. Phys. 44(12), 8495–8497 (2005).
[Crossref]

Opt. Commun. (1)

D. Fluck and P. Günter, “Efficient second-harmonic generation by lens wave-guiding in KNbO3 crystals,” Opt. Commun. 147(4-6), 305–308 (1998).
[Crossref]

Opt. Express (7)

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
[Crossref] [PubMed]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express 17(8), 6532–6539 (2009).
[Crossref] [PubMed]

G. Li, Y. Cui, and J. Wang, “Photorefractive inhibition of second harmonic generation in periodically poled MgO doped LiNbO₃ waveguide,” Opt. Express 21(19), 21790–21799 (2013).
[Crossref] [PubMed]

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
[Crossref] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[Crossref] [PubMed]

H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19(23), 22588–22593 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (2)

C. Fiebig, S. Pekarek, K. Paschke, M. Uebernickel, T. Südmeyer, U. Keller, and G. Erbert, “High-brightness distributed-bragg-reflector tapered diode lasers: pushing your application to the next level,” Proc. SPIE 7918, 79180R (2011).

S. Guo, J. Wang, Y. Han, and J. He, “Frequency doubling of cw 1560nm laser with single-pass, double-pass and cascaded MgO:PPLN crystals and frequency locking to Rb D2 line,” Proc. SPIE 8772, 87721B (2013).

Sov. J. Quantum Electron. (1)

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21(4), 426–428 (1991).
[Crossref]

Other (2)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science, 2005).

A. G. Schott, “Optical Glass Data Sheets,” http://www.schott.com/advanced_optics/english/download/schott-optical-glass-collection-datasheets-april-2015-eng.pdf .

Supplementary Material (2)

» Media 1: MP4 (2844 KB)     
» Media 2: MP4 (2757 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sketch of the cascade concept. The fundamental beam is shown with red, and the SH beam with green. Nonlinear crystal 1 is chosen for high efficiency, while nonlinear crystal 2 is chosen for SH power handling ability. With additional crystals, refocusing optics and phase plates, the concept can be extended to include more stages.
Fig. 2
Fig. 2 Single-frame excerpts from video illustrations which show the normalized N = 2 cascade output power as a function of the two temperatures and the relative phase offset. Left: Configuration 1, where η 1 = η 2 (Media 1). Right: Configuration 2, where η 2 =0.29× η 1 (Media 2).
Fig. 3
Fig. 3 Simulated temperature-optimized enhancement factor and the optimal ΔkL values as a function of relative phase offset in a two-crystal cascade. Left: Two identical crystals, η 1 = η 2 , as in cascade configuration 1. In this case, (Δ k 1 L 1 ) m = (Δ k 2 L 2 ) m . Right: The case where η 2 =0.29× η 1 , as in cascade configuration 2.
Fig. 4
Fig. 4 The beam profile of the infrared fundamental beam in focus. A central lobe carries the majority of the power. The structure in the vertical direction (fast axis) is very slight, whereas the structure in the horizontal direction (slow axis) is more significant.
Fig. 5
Fig. 5 SH power curves for the three types of crystals used. Temperature set point was reoptimized at each point. Fits to the expression for depleted SHG are shown. For the PPMgCLN crystals, only points below 4 W input power were included in the fits.
Fig. 6
Fig. 6 Far field intensity profile of SH cascade output at maximum SH power. Left: Configuration 1. Significant circular distortion appears at high SH power (3.6 W). Right: Configuration 2. Beam is diffraction limited even at the highest SH power (3.7 W).
Fig. 7
Fig. 7 SH power curve of the cascade in configuration 2. Temperature set points were reoptimized for each point. A fit is shown to the expression for depleted SHG, resulting in η=6.7%/W . Only the points below 4.5 W input power were included in the fit.
Fig. 8
Fig. 8 Phase matched cascade enhancement κ 0 as a function of rotation angle of the phase plate around the vertical axis. Configuration 1, low power. Dashed line: theoretical maximum. Points: measurements. Solid curve: Theory normalized to the achieved maximum enhancement.
Fig. 9
Fig. 9 Phase matched cascade enhancement κ 0 as a function of rotation angle of the phase plate around the vertical axis. Configuration 2, low power. Dashed lines: theoretically maximal and minimal κ. Points: measurements. Solid curve: theory normalized to the achieved maximum and minimum.
Fig. 10
Fig. 10 SH (red circles) and fundamental (black squares) output of the cascade in configuration 2 at high power, as a function of rotation angle of the phase plate around the vertical axis. Strong fundamental beam depletion is observed.
Fig. 11
Fig. 11 Normalized output power from configuration 2 as a function of temperature set points of the two crystals, for various powers and phase plate settings. Linear interpolation is used between measurement points. The color scale shown in e applies to all plots. a: Low power measurement roughly at constructive interference. b: Simulation with ϕ=0 . c: Low power measurements roughly at destructive interference. d: Simulation with ϕ=π . e: Measurement at maximum input power and constructive interference.

Tables (2)

Tables Icon

Table 1 Single-Crystal SHG Characterization

Tables Icon

Table 2 Beam Quality Parameters for Various Degrees of Depletiona

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 2ω = P ω tan h 2 η P ω .
E 2ω = j=1 N E 2ω (j) ,
E 2ω (j) = η ¯ j L j P ω ,
E 2ω = j=1 N η ¯ j L j P ω ,
P 2ω = ( j=1 N η ¯ L P ω ) 2 = η ¯ L N 2 P ω 2 ,
E 2ω (1) ={ P ω η 1 , Δ k 1 =0 P ω η 1 e iΔ k 1 L 1 1 iΔ k 1 L 1 , Δ k 1 0
E 2ω (2) ={ P ω η 2 e i(Δ k 1 L 1 + ϕ 1 ) , Δ k 2 =0 P ω η 2 e iΔ k 2 L 2 1 iΔ k 2 L 2 e i(Δ k 1 L 1 + ϕ 1 ) , Δ k 2 0
E 2ω (j) ={ P ω η j e i n=1 j1 (Δ k n L n + ϕ n ) , Δ k j =0 P ω η j e iΔ k j L j 1 iΔ k j L j e i n=1 j1 (Δ k n L n + ϕ n ) , Δ k j 0
P 2ω = | j=1 N E 2ω (j) | 2 .
κ(Δ k 1 L 1 ,Δ k 2 L 2 ,ϕ)= P 2ω (Δ k 1 L 1 ,Δ k 2 L 2 ,ϕ) P ω 2 η 1 ,
κ m (ϕ)=κ( (Δ k 1 L 1 ) m , (Δ k 2 L 2 ) m ,ϕ)

Metrics