Abstract

We report on the design and fabrication of 894.6nm vertical-cavity surface-emitting lasers (VCSELs) with extremely low threshold at high temperatures, for use in chip-scale Cs atomic clocks. A new design method based on the analysis of the threshold gain and the desired carrier density for different active region structures was proposed to gain the low transparent current density. The increase of the threshold current at higher temperatures was successfully suppressed by introducing the large gain-cavity detuning of VCSEL. By detuning the gain-cavity mode to be −11nm, the minimum threshold current of only 0.23mA at 70 °C was achieved. The operating temperature for emitting the wavelength of 894.6nm was 110 °C, with the single mode suppression ratio (SMSR) of more than 25dB and the threshold current of only 0.32mA.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks

F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, and R. Michalzik
Opt. Express 21(5) 5781-5792 (2013)

Characterization of commercially available vertical-cavity surface-emitting lasers tuned on Cs D1 line at 894.6  nm for miniature atomic clocks

Eric Kroemer, Jaroslaw Rutkowski, Vincent Maurice, Rémy Vicarini, Moustafa Abdel Hafiz, Christophe Gorecki, and Rodolphe Boudot
Appl. Opt. 55(31) 8839-8847 (2016)

OPSR enhancement of high-temperature operating shallow-surface grating VCSELs

Yingying Liu, Xing Zhang, Youwen Huang, Jianwei Zhang, Werner Hofmann, Yongqiang Ning, and Lijun Wang
Appl. Opt. 57(16) 4486-4490 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  2. J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).
  3. D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).
  4. Y. Zhang, S. Qu, and S. Gu, “Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers,” Opt. Express 20(6), 6400–6405 (2012).
    [Crossref] [PubMed]
  5. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005).
    [Crossref] [PubMed]
  6. A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
    [Crossref]
  7. D. W. Jenkins, “Optical constants of AlxGa1-xAs,” J. Appl. Phys. 68(4), 1848–1853 (1990).
    [Crossref]
  8. H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).
  9. F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
    [Crossref]
  10. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter 43(12), 9649–9661 (1991).
    [Crossref] [PubMed]
  11. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
    [Crossref]
  12. Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
    [Crossref] [PubMed]
  13. S. L. Chuang, Physics of optoelectronic devices (Wiley-Interscienc, 1995).
  14. P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
    [Crossref]
  15. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
    [Crossref]
  16. S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
    [Crossref]
  17. J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
    [Crossref]
  18. J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
    [Crossref]
  19. I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
    [Crossref]

2013 (1)

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

2012 (2)

Y. Zhang, S. Qu, and S. Gu, “Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers,” Opt. Express 20(6), 6400–6405 (2012).
[Crossref] [PubMed]

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

2011 (1)

2010 (2)

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

2008 (1)

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

2007 (2)

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
[Crossref]

2006 (1)

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

2005 (1)

2001 (1)

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

2000 (1)

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

1992 (1)

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

1991 (1)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter 43(12), 9649–9661 (1991).
[Crossref] [PubMed]

1990 (1)

D. W. Jenkins, “Optical constants of AlxGa1-xAs,” J. Appl. Phys. 68(4), 1848–1853 (1990).
[Crossref]

1989 (1)

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Al-Samaneh, A.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Asaro, L. A. D.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Bakarov, A. K.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Beterov, I. I.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Bou Sanayeh, M.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Bugge, F.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Chan, E. Y.

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

Chen, T.

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

Chiang, C.

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

Chuang, S. L.

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter 43(12), 9649–9661 (1991).
[Crossref] [PubMed]

Coldren, L.

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Corzine, S.

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Derebezov, I. A.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Derry, P. L.

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

Entin, V. M.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Erbert, G.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Figueroa, L.

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

Fricke, J.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Fu, R. J.

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

Fu, X.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Garvey, R. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Gavrilova, T. A.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Geels, R.

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Geib, K. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Gerginov, V.

Ghosh, C. L.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Gramlich, S.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Gu, S.

Gustavsson, J. S.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Haglund, Å.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Haisler, V. A.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Healy, S. B.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Hollberg, L.

Hong, C. S.

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

Iga, K.

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Jenkins, D. W.

D. W. Jenkins, “Optical constants of AlxGa1-xAs,” J. Appl. Phys. 68(4), 1848–1853 (1990).
[Crossref]

Joel, A.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Kachanova, M. M.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Kalagin, A. K.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Kern, A.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Khalfin, V.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Kitching, J.

Knappe, S.

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Larsson, A.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Lu, Y. M.

J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
[Crossref]

Lutwak, R.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Mescher, M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Miah, M. J.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Michalzik, R.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Miglo, A.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Ning, Y.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

O’Reilly, E. P.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Peake, G. M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Pradhan, P.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Qu, S.

Robinson, H. G.

Ryabtsev, I. I.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Schwarz, W.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Schwindt, P. D. D.

Scott, J.

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Semenova, O. I.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Serkland, D. K.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Seurin, J. F.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Shah, V.

Staske, R.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Su, S.

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

Tang, S.

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

Tong, C.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Toropov, A. I.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Tretyakov, D. B.

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Tsai, H. M.

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

Varghese, M.

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Wahl, D.

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

Wang, L.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

Wang, Z.

Wenzel, H.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Westbergh, P.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

Weyers, M.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Wu, J.

J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
[Crossref]

Wynn, J. D.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Xiao, W.

J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
[Crossref]

Xu, G.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

Yan, R.

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

Zeimer, U.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

Zeng, Y.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

Y. Zhang, Y. Ning, L. Zhang, J. Zhang, J. Zhang, Z. Wang, J. Zhang, Y. Zeng, and L. Wang, “Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs,” Opt. Express 19(13), 12569–12581 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhang, Y.

Appl. Phys. Lett. (2)

A. Al-Samaneh, M. Bou Sanayeh, M. J. Miah, W. Schwarz, D. Wahl, A. Kern, and R. Michalzik, “Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks,” Appl. Phys. Lett. 101(17), 171104 (2012).
[Crossref]

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, “12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells,” Appl. Phys. Lett. 79(13), 1965–1967 (2001).
[Crossref]

IEEE J. Quantum Electron. (3)

P. L. Derry, R. J. Fu, C. S. Hong, E. Y. Chan, and L. Figueroa, “Analysis of the high temperature characteristics of InGaAs- AlGaAs strained quantum-well Lasers,” IEEE J. Quantum Electron. 28(12), 2698–2705 (1992).
[Crossref]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

S. Corzine, R. Geels, J. Scott, R. Yan, and L. Coldren, “Design of Fabry-Perot surace-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25(6), 1513–1524 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 46(4), 506–512 (2010).
[Crossref]

K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

IET Optoelectron. (1)

J. Wu, W. Xiao, and Y. M. Lu, “Temperature and wavelength dependence of gain and threshold current detuning with cavity resonance in vertical-cavity surface-emitting lasers,” IET Optoelectron. 1(5), 206–210 (2007).
[Crossref]

J. Appl. Phys. (1)

D. W. Jenkins, “Optical constants of AlxGa1-xAs,” J. Appl. Phys. 68(4), 1848–1853 (1990).
[Crossref]

Laser Phys. Lett. (1)

J. Zhang, Y. Ning, Y. Zeng, J. Zhang, J. Zhang, X. Fu, C. Tong, and L. Wang, “Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks,” Laser Phys. Lett. 10(4), 045802 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter 43(12), 9649–9661 (1991).
[Crossref] [PubMed]

Proc. SPIE (3)

H. M. Tsai, S. Tang, S. Su, T. Chen, and C. Chiang, “Numerical simulation of temperature-dependence on distributed bragg reflector (DBR) and performance analyses for proton-implant/oxide confined VCSEL: comparison with transmission matrix, matrix calculating methods and macleod model,” Proc. SPIE 6484, 64840I (2007).

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D. Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D (2008).

D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R. M. Garvey, M. Varghese, and M. Mescher, “VCSELs for atomic clocks,” Proc. SPIE 6132, 613208 (2006).

Semiconductors (1)

I. A. Derebezov, V. A. Haisler, A. K. Bakarov, A. K. Kalagin, A. I. Toropov, M. M. Kachanova, T. A. Gavrilova, O. I. Semenova, D. B. Tretyakov, I. I. Beterov, V. M. Entin, and I. I. Ryabtsev, “Single-mode vertical-cavity surface emitting lasers for 87Rb-based chip-scale atomic clock,” Semiconductors 44(11), 1422–1426 (2010).
[Crossref]

Other (1)

S. L. Chuang, Physics of optoelectronic devices (Wiley-Interscienc, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic cross section of the fabricated VCSEL structure, inserted was the normalized optical field distribution within the active region and the refractive index of each layer. The transmission matrix method (TMM) was utilized in the calculation.
Fig. 2
Fig. 2 Calculated relationships between indium contents and thicknesses of InGaAs QWs, which provided the gain peak wavelengths of 870nm, 880nm and 890nm at RT, with the fixed barriers of Al0.3Ga0.7As.
Fig. 3
Fig. 3 The peak material gain of InGaAs QWs providing the gain peak wavelength of (a) 870nm, (b) 880nm and (c) 890nm as a function of carrier density at RT. The QW thickness varied from 4nm to 11nm. The threshold gain of VCSELs composed by these QWs was respectively indicated on the lines by the solid circle.
Fig. 4
Fig. 4 (a) Gain spectra of active region with the gain peak wavelength of 870nm at RT for different temperatures. Inserted figure was the change of cavity mode with temperature. The red solid circle indicated the cavity-mode gain at different temperatures, which was the overlap of gain spectra and cavity mode. (b) Temperature dependence of the cavity-mode gain for different gain-cavity mode detuning values of −21nm, −11nm, −1nm at RT.
Fig. 5
Fig. 5 CW operation characteristics of a standard VCSEL with 3.5 μm active diameter at different substrate temperatures. The P-I characteristic near the threshold current was enlarged in the inserted figure.
Fig. 6
Fig. 6 Threshold current and optical output wavelength under the operating current of I = 1mA versus substrate temperature. Inserted were the optical spectrum at RT and operating temperatures.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g(E)= g 0 2πtE i,j 0 (π/Γ) f dip ( k t ) M b ( f j f i )d k t 2 1+( E cj ( k t ) E kpi ( k t ) E 2 )/Γ
g 0 = π q 2 h ε 0 c m 0 2 n .
g th = α a + 1 Γ r d a [ α i (L d a )+ln 1 R t R b ].
Γ r = L d a d a | E(z) | 2 dz L | E(z) | 2 dz .

Metrics