Abstract

Several scattering type metal tips patterned with asymmetric metal/dielectric bump gratings are studied and proved to be efficient in focusing light energy into nano ‘hot spot’. The dielectric bump tip shows complex mechanisms including local geometric resonance, surface plasmon polariton (SPP) standing wave resonance and Fano effect in the near-field enhancement. Additionally, considering the practical situation, we also demonstrate that, for the case of bending tip surface, the grating coupling method for plasmonic nano-focusing is still applicable if the intervals between neighboring bumps are well designed according to the surface bending curvature. With practical realizations, our results could benefit not only infrared scanning near-field optical microscopes (SNOMs) but also many other applications in nanotechnology such as sensing and lithography.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of a metallic SNOM tip illuminated by a parabolic mirror

Josip Mihaljevic, Christian Hafner, and Alfred J. Meixner
Opt. Express 21(22) 25926-25943 (2013)

Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips

Valeria Lotito, Urs Sennhauser, and Christian Hafner
Opt. Express 18(8) 8722-8734 (2010)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
    [Crossref]
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
    [Crossref]
  3. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47(43), 8178–8191 (2008).
    [Crossref]
  4. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  5. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
    [Crossref] [PubMed]
  6. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [Crossref] [PubMed]
  7. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
    [Crossref] [PubMed]
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [Crossref] [PubMed]
  9. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [PubMed]
  10. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [Crossref] [PubMed]
  11. A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
    [Crossref]
  12. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
    [Crossref] [PubMed]
  13. Y. Kajihara, K. Kosaka, and S. Komiyama, “Thermally excited near-field radiation and far-field interference,” Opt. Express 19(8), 7695–7704 (2011).
    [Crossref] [PubMed]
  14. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  15. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).
  16. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18(8), 8722–8734 (2010).
    [Crossref] [PubMed]
  17. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
    [Crossref] [PubMed]
  18. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
    [Crossref] [PubMed]
  19. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [Crossref] [PubMed]
  20. J. S. Lee, S. Han, J. Shirdel, S. Koo, D. Sadiq, C. Lienau, and N. Park, “Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method,” Opt. Express 19(13), 12342–12347 (2011).
    [Crossref] [PubMed]
  21. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
    [Crossref] [PubMed]
  22. V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
    [Crossref] [PubMed]
  23. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28(20), 1870–1872 (2003).
    [Crossref] [PubMed]
  24. T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009).
    [Crossref]
  25. J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
    [Crossref]
  26. X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
    [Crossref] [PubMed]
  27. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
    [Crossref]
  28. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref] [PubMed]
  29. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
    [Crossref] [PubMed]
  30. Y. Kim and D. N. Seidman, “An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips,” Met. Mater. Int. 9(4), 399–404 (2003).
    [Crossref]

2013 (1)

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

2012 (2)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

2011 (5)

2010 (5)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18(8), 8722–8734 (2010).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

2009 (4)

T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009).
[Crossref]

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
[Crossref] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

2008 (3)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47(43), 8178–8191 (2008).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

2007 (1)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

2006 (1)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

2004 (1)

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

2003 (2)

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28(20), 1870–1872 (2003).
[Crossref] [PubMed]

Y. Kim and D. N. Seidman, “An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips,” Met. Mater. Int. 9(4), 399–404 (2003).
[Crossref]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

1998 (1)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

1984 (2)

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
[Crossref]

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Bona, G. L.

V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S.

T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

De Wilde, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
[Crossref]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

García-Vidal, F. J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Gerton, J. M.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Greffet, J. J.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Hafner, C.

V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
[Crossref] [PubMed]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18(8), 8722–8734 (2010).
[Crossref] [PubMed]

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Han, S.

Hao, Z. H.

Harootunian, A.

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Hartschuh, A.

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47(43), 8178–8191 (2008).
[Crossref]

Hess, O.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Isaacson, M.

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Jones, A. C.

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kajihara, Y.

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Kim, P. S.

Kim, Y.

Y. Kim and D. N. Seidman, “An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips,” Met. Mater. Int. 9(4), 399–404 (2003).
[Crossref]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

Komiyama, S.

Koo, S.

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Kosaka, K.

Lalanne, P.

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
[Crossref] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
[Crossref]

Lee, G.

Lee, J. S.

Lemoine, P. A.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Lessard, G. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Lewis, M.

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Li, Q. Q.

Lienau, C.

J. S. Lee, S. Han, J. Shirdel, S. Koo, D. Sadiq, C. Lienau, and N. Park, “Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method,” Opt. Express 19(13), 12342–12347 (2011).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Liu, H. T.

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
[Crossref] [PubMed]

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Lotito, V.

V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
[Crossref] [PubMed]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18(8), 8722–8734 (2010).
[Crossref] [PubMed]

Ma, Z.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Maier, S. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Mulet, J. P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Muray, A.

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

O’Callahan, B. T.

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Oh, C. H.

Oh, S. H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Pannetier, B.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Park, N.

Park, S.

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
[Crossref]

Quake, S. R.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Raschke, M. B.

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Sadiq, D.

Sánchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Seidman, D. N.

Y. Kim and D. N. Seidman, “An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips,” Met. Mater. Int. 9(4), 399–404 (2003).
[Crossref]

Sennhauser, U.

V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
[Crossref] [PubMed]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express 18(8), 8722–8734 (2010).
[Crossref] [PubMed]

Shirdel, J.

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009).
[Crossref]

Song, S. H.

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Tomlinson, L. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Wade, L. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Wang, Q. Q.

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

Wood, J. J.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Yang, H. U.

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

Yang, X. Y.

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
[Crossref] [PubMed]

Yang, Z. J.

Zhang, L. H.

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Zhang, Z. S.

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47(43), 8178–8191 (2008).
[Crossref]

Appl. Phys. Lett. (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651 (1984).
[Crossref]

Met. Mater. Int. (1)

Y. Kim and D. N. Seidman, “An electrochemical etching procedure for fabricating scanning tunneling microscopy and atom-probe field-ion microscopy tips,” Met. Mater. Int. 9(4), 399–404 (2003).
[Crossref]

Nano Lett. (5)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[Crossref] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010).
[Crossref] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[Crossref] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Nature (3)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009).
[Crossref]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85(7), 075441 (2012).
[Crossref]

Phys. Rev. Lett. (3)

X. Y. Yang, H. T. Liu, and P. Lalanne, “Cross conversion between surface plasmon polaritons and quasicylindrical waves,” Phys. Rev. Lett. 102(15), 153903 (2009).
[Crossref] [PubMed]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93(18), 180801 (2004).
[Crossref] [PubMed]

Plasmonics (1)

V. Lotito, U. Sennhauser, C. Hafner, and G. L. Bona, “Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation,” Plasmonics 6(2), 327–336 (2011).
[Crossref] [PubMed]

Prog. Surf. Sci. (1)

A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci. 88(4), 349–392 (2013).
[Crossref]

Science (1)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref] [PubMed]

Ultramicroscopy (1)

M. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope,” Ultramicroscopy 13(3), 227–231 (1984).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of full-metal tip patterned with symmetric metal bumps, the cone angle is set at 30 . The electric energy density distributions of (b) the symmetrically patterned metal tip ( h=800nm ) (c) the BSA metal tip ( h L =800nm ; h R =400nm ) and (d) the BPA tip ( h L =800nm ; p 0,R =1.5p ), shown with the same color scale. (e) Sketch of charge distribution (un-strict) of the symmetrically patterned metal tip. The | E Z / E i | frequency spectrums of (f) the BSA and (g) the BPA tips, | E Z | is the longitudinal electric intensity at the tip apex and | E i | is the electric intensity of the incident light.
Fig. 2
Fig. 2 The electric energy density distributions in the x-y plane close to the tip apex of (a) the symmetrically patterned metal tip ( h=800nm ), (b) the BSA metal tip ( h L =800nm ; h R =0nm ) and (c) the BPA tip ( h=800nm ; p 0,R =1.5p ). (d) - (f) Magnifications of the central zone of the upper row pictures. FWHM of the (g) BSA tip and (h) BPA tip, the value of λ 0 is chosen at 15μm .
Fig. 3
Fig. 3 (a) The | E Z / E i | frequency spectrums of the dielectric BSA ( h R =0nm ) tips with different bump heights. (b) The structure of the dielectric BSA tip (shown as separated parts), composed of dielectric half tori (green colored) and PEC groove tip (gray colored). The electric field distribution (shown as the E yz vector fields, the electric field polarization direction of incident light parallels to the y axis) corresponding to (d) mode 1 and (e) mode 2 marked in Figs. 3(a) and 3(c) the electric field distribution (the same observation way) of the full-metal BSA tip ( h L =1780nm ; h R =0nm ) at its resonance frequency.
Fig. 4
Fig. 4 (a) The | E Z / E i | frequency spectrums of the dielectric BSA ( h R =0nm ) tips with different value of p 0 .The distributions of electric fields (shown as the E yz vector fields, the electric field polarization direction of the incident light parallels to the y axis) corresponding to (b) position A, (c) position B and (d) position C of line ‘ p 0 =2p ’ shown in Fig. 4(a), the arrows represent the charge oscillation directions.
Fig. 5
Fig. 5 (a) Profile section views of the inward cone tip (the darkest profile), the outward cone tip (the lightest profile) and the ideal cone tip (the moderate profile). (b) The | E Z / E i | frequency spectrums of the ideal cone tips (dash lines) and the inward/outward cone tip (solid lines). The electric energy density distributions (shown with the same color scale) of (c) the inward cone tip, (d) the ideal cone tip and (e) the outward cone tip.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

β= k 0 cosθ±n 2π p
p=n ( 1 λ sp + cosθ λ 0 ) 1
λ sp = λ 0 ( ε d + ε m ε d ε m ) 1/2
pn λ 0 1+cosθ
q=Acos(ωtφ)=A(h)cos( 2πc λ 0 tφ)
q=A e i(ωtφ)
| E z || q |=| q L + q R |=| A L e i(ωt φ L ) + A R e i(ωt φ R π) |
| E z | A L 2 + A R 2 2 A L A R cos( φ R φ L )
p i+1 (1+cos θ i+1 )= p i (1+cos θ i )=n λ 0

Metrics