Abstract

Kapitza tandem structures, consisting of thin alternating layers with opposite signs of the dielectric permittivity, have been recently predicted to afford diffraction arrest of focused microwave radiation [Phys. Rev. Lett. 110, 143901 (2013)]. Here we study the applicability of the Kapitza effect to control the propagation of structured subwavelength light beams. We show that a sufficiently deep modulation of the dielectric permittivity allows a nearly complete diffraction cancellation of multiple-peak subwavelength beams, and we study how the degree of diffraction cancellation decreases as the spatial spectrum of the input beam broadens. We also find that subwavelength light beams can be steered by varying the depth of the permittivity modulation. In particular, a sufficiently large permittivity modulation is shown to cause otherwise titled inputs to propagate always along the direction of modulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction-free propagation of subwavelength light beams in layered media

Juan J. Miret and Carlos J. Zapata-Rodríguez
J. Opt. Soc. Am. B 27(7) 1435-1445 (2010)

Subwavelength interference of light on structured surfaces

Xiangang Luo, DinPing Tsai, Min Gu, and Minghui Hong
Adv. Opt. Photon. 10(4) 757-842 (2018)

Subwavelength Bessel beams in wire media

Carlos J. Zapata-Rodríguez and Juan J. Miret
J. Opt. Soc. Am. B 31(1) 135-143 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
    [Crossref] [PubMed]
  2. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
    [Crossref]
  3. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  4. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  6. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
    [Crossref]
  7. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  8. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
    [Crossref]
  9. G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
    [Crossref]
  10. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
    [Crossref]
  11. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).
  12. X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites,” J. Opt. Soc. Am. A 26(12), 2521–2525 (2009).
    [Crossref] [PubMed]
  13. P. Li and T. Taubner, “Multi-wavelength superlensing with layered phonon-resonant dielectrics,” Opt. Express 20(11), 11787–11795 (2012).
    [Crossref] [PubMed]
  14. R. Kotyński, T. Stefaniuk, and R. Kotynskiand T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunneling regimes,” J. Opt. A, Pure Appl. Opt. 11(1), 015001 (2009).
    [Crossref]
  15. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  16. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  17. A. Salandrino and N. Engheta, “Far-filed diffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
    [Crossref]
  18. T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
    [Crossref]
  19. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
    [Crossref]
  20. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  21. L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21(18), 21542–21555 (2013).
    [Crossref] [PubMed]
  22. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  23. A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
    [Crossref]
  24. C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza stratified media: diffractionless propagation,” Phys. Rev. Lett. 110(14), 143901 (2013).
    [Crossref] [PubMed]
  25. C. Rizza and A. Ciattoni, “Kapitza homogenization of deep gratings for designing dielectric metamaterials,” Opt. Lett. 38(18), 3658–3660 (2013).
    [Crossref] [PubMed]
  26. B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
    [Crossref]
  27. C. Huang, F. Ye, Z. Sun, and X. Chen, “Tunable subwavelength photonic lattices and solitons in periodically patterned graphene monolayer,” Opt. Express 22(24), 30108–30117 (2014).
    [Crossref] [PubMed]
  28. E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated grapheme monolayer,” Phys. Rev. B 89, 081410 (R) (2014).
    [Crossref]
  29. COMSOL Multiphysics, www.comsol.com .
  30. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
    [Crossref]

2014 (1)

2013 (8)

A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
[Crossref]

C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza stratified media: diffractionless propagation,” Phys. Rev. Lett. 110(14), 143901 (2013).
[Crossref] [PubMed]

C. Rizza and A. Ciattoni, “Kapitza homogenization of deep gratings for designing dielectric metamaterials,” Opt. Lett. 38(18), 3658–3660 (2013).
[Crossref] [PubMed]

B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
[Crossref]

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21(18), 21542–21555 (2013).
[Crossref] [PubMed]

2012 (3)

P. Li and T. Taubner, “Multi-wavelength superlensing with layered phonon-resonant dielectrics,” Opt. Express 20(11), 11787–11795 (2012).
[Crossref] [PubMed]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

2009 (2)

R. Kotyński, T. Stefaniuk, and R. Kotynskiand T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunneling regimes,” J. Opt. A, Pure Appl. Opt. 11(1), 015001 (2009).
[Crossref]

X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites,” J. Opt. Soc. Am. A 26(12), 2521–2525 (2009).
[Crossref] [PubMed]

2008 (2)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

2007 (3)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (3)

A. Salandrino and N. Engheta, “Far-filed diffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2005 (1)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

2003 (2)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2000 (2)

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

Alberucci, A.

A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
[Crossref]

Alekseyev, L. V.

Assant, G.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

Assanto, G.

A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Chen, X.

Ciattoni, A.

C. Rizza and A. Ciattoni, “Kapitza homogenization of deep gratings for designing dielectric metamaterials,” Opt. Lett. 38(18), 3658–3660 (2013).
[Crossref] [PubMed]

C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza stratified media: diffractionless propagation,” Phys. Rev. Lett. 110(14), 143901 (2013).
[Crossref] [PubMed]

Dyadyusha, A.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-filed diffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Gao, J.

Garanovich, I. L.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Gu, L.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

He, S.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).

Huang, C.

Ikonen, P.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Iorsh, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Jacob, Z.

Jin, Y.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).

Kaczmarek, M.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

Kitur, J. K.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Kotynski, R.

R. Kotyński, T. Stefaniuk, and R. Kotynskiand T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunneling regimes,” J. Opt. A, Pure Appl. Opt. 11(1), 015001 (2009).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Li, P.

Li, X.

X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites,” J. Opt. Soc. Am. A 26(12), 2521–2525 (2009).
[Crossref] [PubMed]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Longhi, S.

B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
[Crossref]

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Luo, X.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Marucci, L.

A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
[Crossref]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

Mukhin, I. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Narimanov, E.

Narimanov, E. E.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Noginov, M. A.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Peccianti, M.

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

Ren, G.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Rizza, C.

C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza stratified media: diffractionless propagation,” Phys. Rev. Lett. 110(14), 143901 (2013).
[Crossref] [PubMed]

C. Rizza and A. Ciattoni, “Kapitza homogenization of deep gratings for designing dielectric metamaterials,” Opt. Lett. 38(18), 3658–3660 (2013).
[Crossref] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-filed diffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shadrivov, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Silberberg, Y.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

Simovski, C. R.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Stefaniuk, T.

R. Kotyński, T. Stefaniuk, and R. Kotynskiand T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunneling regimes,” J. Opt. A, Pure Appl. Opt. 11(1), 015001 (2009).
[Crossref]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

Sukhorukov, A. A.

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Sun, L.

Sun, Z.

Tao, X.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Taubner, T.

Torosov, B.

B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
[Crossref]

Tumkur, T. U.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

Valle, G. D.

B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
[Crossref]

Wang, C.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yang, X.

Ye, F.

Yi, G.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhuang, F.

Appl. Phys. Lett. (2)

Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelengthpatterns from diffraction-limited masks using metal–dielectricmultilayers,” Appl. Phys. Lett. 93(11), 111116 (2008).
[Crossref]

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012).
[Crossref]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50(9), 1419–1430 (2003).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

R. Kotyński, T. Stefaniuk, and R. Kotynskiand T. Stefaniuk, “Comparison of imaging with subwavelength resolution in the canalization and resonant tunneling regimes,” J. Opt. A, Pure Appl. Opt. 11(1), 015001 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nat. Phys. (1)

M. Peccianti, A. Dyadyusha, M. Kaczmarek, and G. Assant, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2(11), 737–742 (2006).
[Crossref]

New J. Phys. (1)

A. Alberucci, L. Marucci, and G. Assanto, “Light confinement via periodic modulation of the refractive index,” New J. Phys. 15(8), 083013 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation and localization in modulated photonic lattices,” Phys. Rep. 518(1-2), 1–79 (2012).
[Crossref]

Phys. Rev. A (1)

B. Torosov, G. D. Valle, and S. Longhi, “Imaginary Kapitza pendulum,” Phys. Rev. A 88(5), 052106 (2013).
[Crossref]

Phys. Rev. B (4)

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multiplayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007).

A. Salandrino and N. Engheta, “Far-filed diffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Phys. Rev. Lett. (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[Crossref] [PubMed]

C. Rizza and A. Ciattoni, “Effective medium theory for Kapitza stratified media: diffractionless propagation,” Phys. Rev. Lett. 110(14), 143901 (2013).
[Crossref] [PubMed]

Plasmonics (1)

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelengthdemagnification imaging and lithography using hyperlens witha plasmonic reflector layer,” Plasmonics 8(2), 1065–1072 (2013).
[Crossref]

Science (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Other (3)

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated grapheme monolayer,” Phys. Rev. B 89, 081410 (R) (2014).
[Crossref]

COMSOL Multiphysics, www.comsol.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Magnetic field distributions in the input Gaussian (a) multipole beams with Ω= 0.3π /w (b) and Ω=2.7π/w (c). The modulus of their spatial spectrums are shown in (d), (e) and (f), respectively. In all cases w=600nm .
Fig. 2
Fig. 2 Evolution dynamics of simple Gaussian beams with width w=40nm (a), 80nm (b), 120nm (c), 200nm (d), 400nm (e), and 600nm (f), in the Kapitza medium with modulation depth p=1.5 and modulation period ζ=30nm . Propagation distance is 10μm . Note that in Fig. 2 and all the other following figures for the propagation simulations, the horizontal and vertical windows are not properly scaled in order to reduce the figure size.
Fig. 3
Fig. 3 Evolution dynamics of multipole beams with w=600nm , Ω=0.3π/w (a)-(e) and Ω=2.7π/w (f)-(j) in the Kapitza medium for progressively growing modulation depth of the dielectric permittivity. Panels (a)-(e) correspond to p=0,0.4,0.6,0.8 and 1.5 , respectively. Panels (f)-(j) correspond to p=0,0.5,0.8,1.7, and 3 , respectively. Propagation distance is 10μm .
Fig. 4
Fig. 4 The ratio of the output and input powers concentrated within x[w/2,+w/2] window (a) versus width of Gaussian beam at p=1.5 , (b) versus Ω for complex multipole beam at p=1.5 (curve 1) and p=3 (curve 2), (c) versus permittivity modulation depth for complex beams with Ω=0.3π/w (curve 1) and Ω=2.7π/w (curve 2). (d) The angle of refraction of tilted Gaussian beam with θ in = 14 versus permittivity modulation depth. In panels (b)-(d) the width of the envelope is w=600nm . Horizontal dashed lines in (a)-(c) correspond to E tr =1 level.
Fig. 5
Fig. 5 Propagation dynamics of tilted Gaussian beams with w=600nm , θ in = 14 in the Kapitza medium with p=0 (a), 0.06 (b), 0.18 (c), 0.2 (d), 0.3 (e), and 1 (f). Propagation distance is 7.5μm .
Fig. 6
Fig. 6 (a) A schematic of the Kapitza structure composed of alternative layers of silicon and silver, with their thickness d Si =17.87 nm and d Ag =10 nm . Dilectric permittivity of silicon is ε Si =12.25 , while that of silve is ε Ag =20 in (b, d, e) and ε Ag =20+0.19i in (c, f, j). (b, c) The ratio of the output and input powers. (d, f) Ω=0.3π/w , (e, j) Ω=8.3π/w . Propagation distance in (d-g) is 8.0μm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(z)= ε bg +pcos(2πz/ζ),
i E x z = 1 ε 0 ω x ( 1 ε H y x ) μ 0 ω H y , i H y z = ε 0 εω E x ,
H y (x) | z=0 =exp( x 2 / w 2 )sin(Ωx),

Metrics