Abstract

Speckle image reconstruction, in which the speckle transfer function (STF) is modeled as annular distribution according to the angular dependence of adaptive optics (AO) compensation and the individual STF in each annulus is obtained by the corresponding Fried parameter calculated from the traditional spectral ratio method, is used to restore the solar images corrected by AO system in this paper. The reconstructions of the solar images acquired by a 37-element AO system validate this method and the image quality is improved evidently. Moreover, we found the photometric accuracy of the reconstruction is field dependent due to the influence of AO correction. With the increase of angular separation of the object from the AO lockpoint, the relative improvement becomes approximately more and more effective and tends to identical in the regions far away the central field of view. The simulation results show this phenomenon is mainly due to the disparity of the calculated STF from the real AO STF with the angular dependence.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field dependent amplitude calibration of adaptive optics supported solar speckle imaging

Friedrich Wöger and Oskar von der Lühe
Appl. Opt. 46(33) 8015-8026 (2007)

Speckle transfer function for partial correction adaptive optics image reconstruction

Libo Zhong, Yu Tian, and Changhui Rao
Opt. Lett. 39(15) 4599-4602 (2014)

Optical transfer functions derived from solar adaptive optics system data

Friedrich Wöger
Appl. Opt. 49(10) 1818-1825 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).
  2. O. Von der Lühe, “Speckle imaging of solar small scale structure. I-Methods,” Astron. Astrophys. 268, 374–390 (1993).
  3. O. von der Lühe, “Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence,” JOSA A 1(5), 510–519 (1984).
    [Crossref]
  4. K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).
    [Crossref]
  5. E. Pehlemann and O. Von Der Lühe, “Technical aspects of the speckle masking phase reconstruction algorithm,” Astron. Astrophys. 216, 337–346 (1989).
  6. G. Weigelt, “Modified astronomical speckle interferometry “speckle masking”,” Opt. Commun. 21(1), 55–59 (1977).
    [Crossref]
  7. K. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astronomy And Astrophysics-Berlin Then Les Ulis 454(3), 1011–1019 (2006).
    [Crossref]
  8. F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46(33), 8015–8026 (2007).
    [Crossref] [PubMed]
  9. C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, S. Chen, J. Lin, and Z. Liu, “Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory,” Appl. Opt. 49, G129–G135 (2010).
  10. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” JOSA 63(8), 971–980 (1973).
    [Crossref]
  11. C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, and J. Lin, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” in SPIE Astronomical Telescopes + Instrumentation(International Society for Optics and Photonics, 2012), pp. 844746–844746–844748.
  12. F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48(1), A35–A46 (2009).
    [Crossref] [PubMed]

2010 (1)

2009 (1)

2007 (1)

2006 (1)

K. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astronomy And Astrophysics-Berlin Then Les Ulis 454(3), 1011–1019 (2006).
[Crossref]

1993 (1)

O. Von der Lühe, “Speckle imaging of solar small scale structure. I-Methods,” Astron. Astrophys. 268, 374–390 (1993).

1989 (1)

E. Pehlemann and O. Von Der Lühe, “Technical aspects of the speckle masking phase reconstruction algorithm,” Astron. Astrophys. 216, 337–346 (1989).

1984 (1)

O. von der Lühe, “Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence,” JOSA A 1(5), 510–519 (1984).
[Crossref]

1977 (1)

G. Weigelt, “Modified astronomical speckle interferometry “speckle masking”,” Opt. Commun. 21(1), 55–59 (1977).
[Crossref]

1974 (1)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).
[Crossref]

1973 (1)

D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” JOSA 63(8), 971–980 (1973).
[Crossref]

1970 (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Chen, D.

Chen, S.

Guan, C.

Knox, K. T.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).
[Crossref]

Korff, D.

D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” JOSA 63(8), 971–980 (1973).
[Crossref]

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Lin, J.

Liu, Z.

Pehlemann, E.

E. Pehlemann and O. Von Der Lühe, “Technical aspects of the speckle masking phase reconstruction algorithm,” Astron. Astrophys. 216, 337–346 (1989).

Puschmann, K.

K. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astronomy And Astrophysics-Berlin Then Les Ulis 454(3), 1011–1019 (2006).
[Crossref]

Rao, C.

Rao, X.

Rimmele, T.

Sailer, M.

K. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astronomy And Astrophysics-Berlin Then Les Ulis 454(3), 1011–1019 (2006).
[Crossref]

Thompson, B. J.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).
[Crossref]

von der Lühe, O.

F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46(33), 8015–8026 (2007).
[Crossref] [PubMed]

O. Von der Lühe, “Speckle imaging of solar small scale structure. I-Methods,” Astron. Astrophys. 268, 374–390 (1993).

E. Pehlemann and O. Von Der Lühe, “Technical aspects of the speckle masking phase reconstruction algorithm,” Astron. Astrophys. 216, 337–346 (1989).

O. von der Lühe, “Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence,” JOSA A 1(5), 510–519 (1984).
[Crossref]

Weigelt, G.

G. Weigelt, “Modified astronomical speckle interferometry “speckle masking”,” Opt. Commun. 21(1), 55–59 (1977).
[Crossref]

Wöger, F.

Zhu, L.

Appl. Opt. (3)

Astron. Astrophys. (3)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

O. Von der Lühe, “Speckle imaging of solar small scale structure. I-Methods,” Astron. Astrophys. 268, 374–390 (1993).

E. Pehlemann and O. Von Der Lühe, “Technical aspects of the speckle masking phase reconstruction algorithm,” Astron. Astrophys. 216, 337–346 (1989).

Astronomy And Astrophysics-Berlin Then Les Ulis (1)

K. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astronomy And Astrophysics-Berlin Then Les Ulis 454(3), 1011–1019 (2006).
[Crossref]

Astrophys. J. (1)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45–L48 (1974).
[Crossref]

JOSA (1)

D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” JOSA 63(8), 971–980 (1973).
[Crossref]

JOSA A (1)

O. von der Lühe, “Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence,” JOSA A 1(5), 510–519 (1984).
[Crossref]

Opt. Commun. (1)

G. Weigelt, “Modified astronomical speckle interferometry “speckle masking”,” Opt. Commun. 21(1), 55–59 (1977).
[Crossref]

Other (1)

C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, C. Guan, D. Chen, S. Chen, C. Wang, and J. Lin, “An updated 37-element low-order solar adaptive optics system for 1-m new vacuum solar telescope at Full-Shine Lake Solar Observatory,” in SPIE Astronomical Telescopes + Instrumentation(International Society for Optics and Photonics, 2012), pp. 844746–844746–844748.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The circular maps of the raw AO images and the values of the calculated D / r 0 in different field angles. (a), (b) The big sunspot case, (c), (d) The small sunspot case.
Fig. 2
Fig. 2 The raw images corrected by AO and the corresponding recovered images. (a), (b) The big sunspot case. (c), (d) The small sunspot case.
Fig. 3
Fig. 3 The raw AO images (the first row) and the corresponding reconstructions (the second row) at the different field angles. (a) The big sunspot case). (b) The small sunspot case.
Fig. 4
Fig. 4 The contrasts of the reconstructions and the relative improvements of the contrasts at different field angles.(a), (c) The big sunspot case, (b), (d) The small sunspot case.
Fig. 5
Fig. 5 The matching arrangement of the actuators of DM and the subapertures of WFS (a) and the relative correction RMS error for the Zernike aberrations (b).
Fig. 6
Fig. 6 (a) The calculated D / r 0 from the traditional spectral ratio method at different field angles when the correction numbers at the lock patch are 15, 25 and 35. (b)- (d) The disparities of the calculated STF from the AO STF with the field angle in the conditions of 15, 25 and 35 correction numbers at the lock patch respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε ( f ) = | I i ( f ) | 2 | I i ( f ) | 2 = | O ( f ) | 2 | O T F i ( f ) | 2 | O ( f ) | 2 | O T F i ( f ) | 2 = | O T F i ( f ) | 2 | O T F i ( f ) | 2
| O ( f ) | 2 = | I i ( f ) | 2 | O T F i ( f ) | 2
l o c k p = ( ( c ) s t d 2 + ( c c ) s t d 2 ) min
c g r a n u l a t i o n = ( s u b _ i m g ) s t d ( s u b _ i m g ) m e a n × 100 %
g = c r c o c o × 100 %
D i s p a r i t y = ( s i t f c s i t f o ) s i t f o

Metrics